
h "
/1I. foy trYl '",~ I

Iq~4

: ExplorinK
"lternatives.

The pl1rpose of this c.hapter is to understand how to deaUY.it..hsituation[?
in which one cp-oiceleads to another, presenting us with a(Search prohQ
In contrast with the choices in chapter 3, the choices here are inherently
ordered.

Search problems are ubiquitous, popping up everywhere Artificial Intel-
" ligence researchers and students go. In this chapter, the examples illustrate

procedures used in route finding, recipe discovery, and game plaving. In
other chapters, there are examples invoiving problem reduction, rule-based
problem solving, theorem proving, property inheritance, sentence analysis,
obstacle avoidance, and "learning.

ti). Figure 4-1 is a roadmap for our trip through the space of possibilities.
:: ~rst, we study the simple, basic procedures. These are depth-first search,

hill climbing, breadth-first search, Qeam search, and best-first search. Thev
are used to find path§.jrom starting positions to goal positions when t.he

. length of the discovered paths is not important.

(~) Second, we study more complicated procedures that find shortest paths.
" These procedures are the British Museum vrocedure, branCfi'and DOund,

".'iliscrete dynamic programmin(J, andA*. They. are useq when the ('ost of
" kaversing a path is of primarv importance, as when a trip-planning sys-

tem is mapping out a route for a salesman. All but the British Museum
" procedure aspire to do their work efficiently.

87

88 Exploring AlternativesCHAPTER 4

/ *,;'
5~o1CJi jJl'pfl'clari' Depth-first

Hill climbing

Breadth-first

Beam

Some path

Best-first

Search {
British museum

Optimal path Branch.and bound
Dynamic programming
A*

Ylinimax /

t,/'Alpha-beta prunj!!g

Games Progressive deepening

Heuristic prunin,~

Heuristic continuat ion

Figure 4-1. Search procedures. Many procedures address the problem of finding
satisfactory paths. Others concentrate on the harder problem of finding opti-
mal paths. Procedures for games differ from ordinary path-finding procedures,
because games involve adversaries.

(J)
Third, we explore some special-case procedures that are appropriate

when facin~ an 'adverRary These procedures are.minimax search, alpha-beta
pruning; progressive -deepeninQ, heuristic pruninQ, and heuristic continua-
tion. They are common in programs that play board games, particularly
checkers and chess.

In studying this chapter, you will develop a repertoire of search pro-
cedures.. To use your repertoire well, you must develop skill in answering
questions like the following ones:

. Which search procedures work, given the nature of the problem in
hand?

" Which procedures are efficient?
O' __d

. Which procedures are easy to implement?

Is search the best thing to think about?.

.1)

,111ft.
~~ .

~ l".
'!

'''\ ~..,,
~i
:

~,,
~ 1

'Ill ,.,I1

J
1

1.1 ,

~ i
" il~

1

'!

,1I!
~I

.,.,ii;1I:

~
;,

2

;~

':!
.~ ;
.,~

;I.
~!.
'iI

.~
~
~

.f

;J!,

'.,
~.

fu~ ,

1) .,

'\

Finding Paths

~
I
.-

t

r
t
i:

[,

4

4 c

Figure 4-2. A basic search problem. A path is to be found from the start node,
S, to the goal node, G. Search procedures explore nets like these, learning about
connections and distances as they go.

1. [FINDING PATHS J

Suppose we want to find some path through a net of cities connected by
highways, such as the net shown in figure 4-2. The path is to begin at city
S, the starting point, and it is to end at city G, the final goal.

Findin~ath involves two kinds of effort:

First, there is the effort expended in findino either some path or the
shortest path.

And, second, there is the effort actually expended in traversino the--
path.

If it is necessary to go from S to G often, then it is worth a lot to find a
really good path. On the other hand, if only one trip is required. and if
the net is hard to force a way through, then it is proper to be content as
soon HS.~nmp.pHth is fOl1nd, even though better ones could be found with
more work. For the moment we will consider only the problem of finding
one path. We will return to finding optimal paths later.

The most obvious way to find a solution is to devise a bookkeeping
scheme that allows orderly exploration of all possible paths. It is useful to
l!°te that the bookkeeping scheme must not allow itself to cycle in the net.
It would be senseless to go through a sequence like S-A-D-S-A-D-. . . over
and over again. With cyclic paths terminated, nets are equivalent to trees.
The tree shown in figure 4-3 is made from the net in figure 4-2 by following
each possible path outward from the net's starting point until it runs into
a place already visited.

By convention, the places in a net or tree are called nodes. In nets. the
connections between nodes are called links, and in trees, the connections
are called branches. Also, it is common to talk about trees using terms
borrowed from genealogy. Branches directly connect parents with children.

.

.

89

90 CHAPTER 4 Exploring Alternatives

25

Figure 4-3. A tree made from a net. Nets are made into trees by tracing out all
possible paths to the point where they reenter previously visited nodes. Node S
is the root node. Node S is also a parent node, with its children being A and D,
and an ancestor node, with all other nodes in the tree being descendants. The
nodes with no children are the terminal nodes. The numbers beside the terminal
nodes are accumulated distances.

The node at the top of a tree, the one with no parent, is called the root node.
The nodes at the bottom, the ones with no children, are called terminal
nodes. One node is the ancestor of another, a descendant, if there is a chain
of branches between the two.

Finally, if the number of children is always the same for every node
that has children, that number is said to be the branchina factor.

Drawing in the children of a node is called expanding the node. Nodes
are said to be openuntil they are expanded, whereupon they become closed.

If no node in a net is to be visited twice, there can be no more than
n levels in the corresponding tree. where n is the total number of nodes,
eight in the map traversal example. In the example, the goal is reached at
the end of four distinct paths, each of which has a total path length given
by adding up a few distances.

Finding Paths

'I} Depth-first Seaych Dives into the Search Tree
, ---- OJ:,f

[Given that one path is as good as any other, one no-fuss idea is to pick an)
alternative at every node visited and work forward from that alternative. /f
Qther alternativ~s at the sa~e le:relar~ ignored c?~pletely.as long .as.there

1;

1

is hopE>of rE>::Jchmgthe destInatlOn USIng the ongInal chOIce] ThIs IS the
essence of depth-first search. Using a convention that the alternatives are
tried in left-to-right order, the first action in working on the situation in
figure 4-3 is a headlong dash to the bottom of the tree along the leftmost
branches.

But since a hearllong rlash learls to terminal nOrle(';, withol1t enCOl1n
tering G, the next step is to back up to the nearest ancestor node with
an .unex lored alternative. The nearest such node is B. The remaining al-
ternative at is bet er, bringing eventual success through E in spite of
another dead end at D. Figure 4-4 shows the nodes encountered.

If the path through E had not worked out, then the procedure would
move still further back up the tree seeking another viable decision point
to move forward from. On reaching A, movement would go down again,
reaching the destination through D.

Having seen an example of depth-first search, let us write out a proce-
dure:

/JJ:j

11

3

Be warned: depth-first search can be dangerous. Imagine a tree in which C
is the gateway to a vast subnetwork instead of the end of a short dearl-enrl
path. Depth-first movement through such a tree would slip past the levels
.at which the goal node appears and waste incredible energy in exhaustively:
exploring parts of the tree lower down. For such trees, depth-first search
is the worst possible approach.

91

92 CHAPTER

b7'S
. ' , . ' , --(s

"""

Ji,
...

,'
1

1'!

'~I;
4 Exploring Alternatives '"

... ...

Figure 4-4. An example of depth-first search. One alternative is selected and
pursued at each node until the goal is reached or a node is reached where further
downward motion is impossible. When further downward motion is imDossible,
search is restarted at the nearest ancestor node with unexDlored children.

~'// L"//~6/~ '-----.
""'" ..,,

,,
If
,tt""

.I''''

!f
:~:'.'."
'i~ .",".-

3.0

Figure 4-5. An example of hill climbing. Hill climbing is depth-first search with a
heuristic measurement that orders choices as nodes are expanded. The numbers
-beside the nodes are strai~ht-line distances to the goal nod~.

......

Finding Paths 93

(Z) guality Measurements Turn Depth-first Search
i~ll Cl~

Search efficiency may improve spectacularly if there is some way of ordering
choices so that the most promising are explored first. In' many situations,
simple measurements can be made to determine a reasonable ordering.

['lP move throllg:h a tree of pat~s using- h~ll climbina. proc.ee~ as in ~

depth-first search. but order the chOicesaccordmg to some heuflstIc mea-
11

'

sure of remaining distance. The better the heuristic measure~r

hI c Im mg wIll be relative to ordinary depth-first search.) , i
Straight-line, as-the-crow-flies distance is an example of a heuristic.> I i

measure of remaining distance. Figure 4-5 shows what happens when hill ~/H#.r~/ ~..r.h/t'! ,I

climbing is used on the map-traversal problem using as-the-crow-flies dis-if ~~/ff 11

tance to order choices.. ~;:r~k~' ,1

Fr~m a procedural .pomt of vIew,.hII.I~hmbmg dIffers from depth-first : i
search m only one detail, the added, Itahclzed part: ' I

To hill climb:

1 Form a one-element queue consisting of the root node.

2 Until the queue is empty or the goal has been reached,
determine if the first element in the queue is the goal node.

2a If the first element is the goal node, do nothing.

2b If the first element is not the goal node, remove the
first element from the queue, sort the first element's
children i an b estimated remainin distance, and
add the first element s children, i any, to t e ront of
the queue.

3 If the goal node has been found, announce success; other-
wise announce failure.

11I

A form of hill climbing is also useq in dTcLlameter optlmlzati01). Here are
some examples:

. On entering a room you find the temperature lln~omforb1hle. Walking
over to the thermostat, you find, to your surprise, that you cannot tell
how to set it because the temperature markings have been obliterated.

The picture on your TV set has deteriorated over a period of time.
You must adjust the tuning, color, tint, and brightness controls for a
better picture.

You are halfway up a mountain when a dense fog comes in. You have no
map or trail to followbut you do have a compass and a determination
to get to the toP.

.

.

94 CHAPTER 4 Exploring Alternatives

a z b. z

~
EE

c
N

E

Figure 4-6.. Hill climbing is a bad idea in difficult terrain. In a. foothills stop

progress. Ip b, plains cause aimless wandering. In c, with the terrain described
1?J a contour map, all ridge points look like peaks because all four east-west and
north-south probe directions lead to lower quality measurements.

-

Each of these problems conforms to an abstraction in which there are ad-

justable parameters and a way of measuring the quality associated with
any~particular set of v~llH~sfor t.nf' p~r~mf't.f'r". Instead of an explicit goal,
however, the procedure stops when a node is reached where all the node's
children have lower quality measurements.

In the temperature example, the adjustable parameter is the thermo-
stat setting, and the goodness is the resulting degree of comfort. In the TV
example, there are various knobs, each of which interacts with the others
to determine overall picture quality. And, of course, in the mountaineer-
ing example, position is adjustable, and movement is either up or down as
position changes.

. Thus, to move tnrOlJgn ~.Sp~Cf'of parameter values using parameter-
oriented hill climbing. take one step in each of a fixed set of directions,
move to the best alternative found, and repeat until reaching a point that
is better than all of the surroundIng points reached by one-step probes.

Although simple, parameter optimization via hill climbing suffers from
various problems. The most severe of these problems are the foothill prob-
lem, the plateau problem, and the ridge problem:

jJf~IJ/1!1H " -. The foothill problem occurs whenever there are secondarv peaks. as in
figure 4-630.The secondary peaks draw the hill-climbing procedure like

1 F"""'"

Finding Paths 95

.

magnets. An optimal point is found, but it is local, not global, and the
user is left with a false sense of accomplishment.

The plateau vroblem comes up when there is mostly a flat area sepa-
r.ating the peaks. In extreme cases, the peaks may look like telephone
poles sticking up in a football field, as in figure 4-6b. The local improve-
ment operation breaks down completely. For all but a small number
of positions, all standard-step probes leave the quality measurement
unchanged.

. The ridQe vroblem is more subtle and, consequently, more frustrating.
Suppose we are standing on what seems like a knife edge running gen-
erally from northeast to southwest, as in figure 4-6c. A contour map
shows that each standard step takes us down even though we are not
at anv sort of maximum, local or global. Increasing the number of

. directions used for the probing steps may help.

In general, the foothill, plateau, and ridge problems are greatly exacerbated
as the number of parameter dimensions increases.

(J) :ijTeaGth-nrst ~earc~ Pushes Uniformly into the Search Tree IJJ:'J

When depth-first search and hill climbing are bad choices, breadth-first
search may be useful. Breadth-first search looks for the goal node among
all nodes at a given level before using the children of those nodes to push
Q!k In the situation shown in figure 4-7, node D would be checked just
after A. The procedure would then move on, level by level, discovering G
on the fourth level down from the root level.

Like hill-climbing, a procedure for breadth-first search resembles the
one for depth-first search, differing only in the place where new elements
are added to the queue.

To conduct a breadth-first search:

1 Form a one-element queue consisting of the root node.

2 Until the queue is empty or the goal has been reached,
determine if the first element in the queue is the goal node.

2a If the first element is the goal node, do nothing.
2b If the first element is not the goal node, remove the

first element from th ueue nd a d the fir t ele-
ment's children if an' to the back f t~

3 If the ~as been found, announce success; other-
wise announce failure.

['

1\
1\

96 CHAPTER 4 Exploring Alternatives

1375

Figure 4-7. An example of breadth-first search. Downward motion proceeds level
by level until the goal is reached.

Breadth-first search will work even in trees that are infinitely deep or ef-
fectively infinite. On the other hand. breadth-first search is wasteful when
all paths lead to the destination node at more or less the same depth.------

(~) q:JeamSearCI)~xpands Several Partial Paths
and Purges the Rest 13;:-(5'",{Nlr/J"j/r-

il

Beam search is like breadth-first search because beam search progresses

level by level(Unlike breadth-first search, however, beam search only moves
downwa~d from the~. The other nodes are ignored]

Consequently. the number of nodes explored remains manageable, even
if there is a great deal of hranching and the search is deep. If beam search
~f width 11)is lJSen in ~ tree with hranching factor b. there will be onlywb
nodes under consideration at any deDth. not the explosive number there
would be if breadth-first search were used. Figure 4-8 illustrates how beam
search would handle the map-traversal problem.

1.fJ <!f~st-first Sear~ Expands the Best Partial Path

Recall that when forward motion is blocked, hill climbing demands forward

motion from the last choice through the seemingly best child noder-In best-
first search, forward motion is from the best ODen node so far, no matter

where it is in the partially developen treeJBest-first search works like a
team of cooperating mountaineers seeking out the highest point in a moun-
tain range: they maintain radio contact, move the highest subteam forward
at all times, and divide subteams into sub-subteams at path junctions.

pF'

Finding Paths

2

97

)()(

3

3.0-)(

4

-
Figure 4-8. An example of beam search. Investigation spreads through the search
tree level by level, but only the best w nodes are exoanded, where w = 2 here.
The numbers beside the nodes are strrli~ht-line distances to the goal node.

98 CHAPTER 4 Exploring Alternatives

In the particular map-traversal problem we have been using, hill climb-
ing and best-first search coincidentally explore the search tree in the same
way.

The paths found by best-first search are more likely to be shorter than
those found with other methods, because best-first search always moves
forward from the node that seems closest to the goal node. Note that more

likely does not mean certain, however.
.Like hill climbing, the best-first search procedure requires sorting. This

time, however, the entire Queue must be sorted.

\1

To conduct a best-first search:

1 Form a one-element queue consisting of the root node.

2 Until the queue is empty or the goal has been reached,
determine if the first element in the queue is the goal node.

2a If the first element is the goal node, do nothing.

2b If the first element is not the goal node, remove the
first element from the queue, add the first element's

children, if any, to the queue, and sort th~ue
b7Jestimat~d(f"i",,-ainiii$i1istance. '-- -

3 If the goa -no e. as een found, announce success; other-
wise announce failure.

,
Search May Lead to Discovery

Finding physical paths and tuning parameters are only two applications
for search ideas. More generally, the nodes in a search space mav denote
abstract entities. not just physical places or parameter settings.

. Suppose, for example, that you are wild about cooking, particularly
about creating your own omelet recipes. Deciding to be more systematic
about your discovery procedure, you make a list of recipe transformations
for varying existing recipes:

.

Merge two similar recipes. That is, combine together half the amount
of each of the ingredients from each recipe.

Substitute something similar for a key ingredient.

Double the amount of a flavoring.

Halve the amount of a flavoring.

Add a new flavoring.

Eliminate a flavoring.

.

.

.

.

.

r""

Finding Paths 99

Variations, mostly bad

Variations, mostly bad

Figure 4-9. A search tree with recipe nodes. Recipe transformations build the
tree; interestinQness heuristics guide the best-first search to the better prospects.

~ . .

Naturally, you speculate that most of the changes suggested by these
recipe transformations will turn out awful, unworthy of further develop-
ment. Consequently you need interestingness heuristics to help decide
which recipes to continue to work on. Here are some interestingness heuris-
tics:

Interestingness heuristics can be used with hill climbing, with beam search,
or with best-first search.

Figure 4-9 shows some of the search tree descending from a basic recipe
for an apricot omelet, one similar to a particular favorite of the fictional
detective and gourmand Nero Wolfe:

Apricot Omelet Recipe

1
1
6
2

1/2
2
2
1

ounce kiimmel
cup apricot preserves
eggs
tablespoons cold water
teaspoon salt.
teaspoons sugar
tablespoons unsalted butter
teaspoon powdered sugar

. It tastes good.

. It looks good.

. Your friends eat a lot of it.

. Your friends ask for the recipe.

C~~;t'"PS:

.jT5

.(j~-f

i.
/liI/ Ch~b/~.

-,8t'nm

/JfJ"f- ?:S

100 Exploring AlternativesCHAPTER 4

Using the substitution transformation on the apricot preserves enables
the creation of many things, like apple, blueberry, cherry, orange, peach,
pineapple, and strawberry omelets. Then, once we have more than one
recipe, the merge transformation can be applied, producing, for example,
an apricot-strawberry omelet.

Of course, to make a real recipe generator, we would have to be much
better at generating plausible transformations, for we would waste too
many eggs otherwise. This is consistent with the following general princi-
ples:

. More knowledge means less search.

Search is seductive. While generally involved in many tasks, tuning
a search procedure is rarely the right thing to do. ¥ore often the

Jie;ht thine; i~ to ~g, thereby reducing the need for
~h.

.

The point of the omelet illustration, however, is that search is, nevertheless,
one ingredient of the discovery procedure. The domain of discovery can
be concrete, as in the world of cooking, or abstract, as in the world of
mathematical concepts.

There Are Many Search Alternatives

We have seen that there are many ways for doing search, each with advan-

tages, among them the following:

. Depth-first search is good when blind alleys do not get too deep.

Breadth-first search is good when the number of alternatives at the
choice points is not too large.

.

Hill climbing is good when there is a natural measure of goal distance
and a good choice is likely to be am~ing cho~s at
each chQice point.

. Beam search is good when there is a natural measure of goal distance
and agood path is likely to be among the good-looking partial paths
at all levels.

. Best-first search is good when there is a natural measure of goal dis-
tance and a good Bath may look bad at shallow levels.

~

Finding the Best Path 101

a

b~
0< "0s

('

Figure 4-10. In branch-and-bound search. the node eXDanded is the one at the
end of the shortest Dath leading to an ODennode. Expansion continues until there
is a path reaching the goal that is of length equal to or shorter than all incomplete
paths terminating at ODen nodes. A sample net is shown in a, along with partially
developed search trees in band c. The numbers beneath the nodes in the trees
are accumulated distances. In b, node A might just as well be expanded, for even
if a satisfactory path through B is found, there may be a shorter one through A.
In c, however, it makes no sense to expand node B, because there is a comDlete

path to the goal th~~ is shorter than the path endin~ at B.
7'/-

1l.[FINDING THE BEST PATH]

In this section, we continue to explore the map-traversal problem, but now
with attention to path length. In the end, we will bring together several
distinct ideas to form the A*_.llrocedure.

(I) ':{'he British Museum Procedure Looks Everywhprp. ""b.laH~W Jra/ch

rOne procedure for. finding the shortest path through a net is to find all
possible paths and to select the best from them. This plodding procedure,
named in jest, is known as the British Museum procp.d1lrp.J

To find all possible paths, either a depth-first search or a breadth-first
search will work, with one modification: search does not stop when the first

102 4 Exploring AlternativesCHAPTER

path to the goal is found. If the breadth and depth of the tree are small,
as in the map-traversal example, there are ~o problems.

Unfortunately, the size of search trees is often large, making any pro-
cedure for finding all possible paths extremely unpalatable. Suppose that
'instead of a few levels there is a moderately large number. Suppose further
that the branching is completely uniform and that the number of alter-
native branches at each node is b. Then in the first level there will be b
nodes. For each of these b nodes there will be b more nodes in the second

level, or b2. Continuing this leads to the conclusion that the number of
nodes at depth d must be bd. For even modest breadth and depth, the
number of paths can be large: b = 10 and d = 10 yields 1010 = ten billion
paths. Fortunately, there are strategies that enable optimal paths to be
found without finding all possible paths first.

(~) Branch-and-boundSearch Expands the Least-cost Partial Path

One way to find optimal paths with less work is by using branch-and-
bound search. The basic idea is simple. Suppose an optimal solution is
desired for the net shown in figure 4-10a. Looking only at the first level, in
figure 4-lOb, the distance from S to node A is clearly less than the distance
to B. Following A to the destination at the next level reveals that the total
path lepgth is 4, as shown in figure 4-l0c. But this means there is no point
in calculating the path length for the alternative path through node B since
at B the incomplete path's length is already 5 and hence longer than the
path for the known solution through A.

More generally, the branch-and-boundscheme works like this[During
search there are many incomplete paths contendin~ for further considera- !

tion. The shortest one is extended one level, creating as many new incom-

plete paths as there an> hr::mches. These new paths are then considered
along with the remaining old ones. and again. the shortest is extended.
This repeats until the destination is reached along some path. Since the
shortest path was alwavs chosen for extension. the path first reaching the'
destination is certain to be optimal]

There is a flaw in the explanation, as given. The last step in reaching
the destination may be long enough to make the supposed solution longer
than one or more incomplete paths. It might be that only a tiny step

I

'i would extend one of the incomplete paths to the solution point. To be sure

/
I

this is not so, a slightly better termination condition is needed.[instead of

i V termi~ating when a path is found, terminate when the ~t.~lete

\ \ p~h l~n th~ com~eteJ)athJ

1\
: \
1
\\
\\\!

r'

Finding the Best Path

Here, then, is the procedure with the proper terminating condition:

To conduct a branch-and-bound search:

1 Form a queue of partial paths: Let the initial queue consist
of the zero-length, zero. step path from the root node to
nowhere.

2 Until the queue is empty or the goal has been reached,
determine if the first path in the queue reaches the goal
node.

2a If the first path reaches the goal node, do nothing.

2b If the first path does not reach the goal node:
2b1 Remove the first path from the queue.

2b2 Form new paths from the removed path by ex-
tending one step

2b3 Add the new paths to the queue.

1

\

2b4 Sort the queue by cost accumulated so far, with\
I reast~s1~nt, ~

~
3 If the goal node has been found, announce success; other-

wise announce failure.

Now look again at the map-traversalc problem and see how branch-and-
bound works there. Figure 4-11 illustrates the exploration sequence. In
the first step, A and D are identified as the children of the only active
node, S. The partial path distance of A is 3 and that of D is 4; A therefore
becomes the active node. Then Band D are generated from A with partial

path distances of 7 and 8. Now the first encountered D, with a partial path
distance of 4, becomes the active node, leading to the generation of partial
paths to A and E. At this point, there are four partial paths, with the path
S-D-E being the shortest.

After the seventh step, partial paths S-A-D-E and S-D-E-F are the
shortest partial paths. Expanding S-A-D-E leads to partial paths termi-

nating at Band F. .Expanding S-D-E-F. along the right sin!" of ttlP trpp,
leads to the complete path S-D-E-F-G, with a total distance of 13. This
is the shortest path, but to be absolutely sure, it is necessary to extenn t,wo
partial paths, S-A-B.-E, with a partial path distance of 12, and S-D-E-B,
with a partial path distance of 11. There is no need to extend the partial
path S-D-A-B, since its partial path distance of 13 is equal to that of the
complete path. In this particular example, little work is avoided relative
to exhaustive search, British Museum style.

103

104 CHAPTER 4 Exploring Alternatives

'2

3

4

10

Figure 4-11. Branch-and-bound search determines that path S-D-E-F-G is op-
timal. The numbers beside the nodes are accumulated distances. Search stops
when all partial paths to open nodes are as long as or longer than the complete
path S-D-E-F-G.

Finding the Best Path

5

6

7

8

Figure 4-11. Continued.

105

106 4 Exploring AlternativesCHAPTER

9

10

11

16 15 15 13

Figure 4-11. Continued.

t.

Finding the Best Path 107

Adding Underestimates Improves Efficiency-

In some cases, hranch-::mn-holJnd search can be improved greatly by using fl
guesses about distances remaining as well as facts about distances already :1

accumulated. After all, if a guess about distance remaining is good, then r

that guessed distance added to the definitely known distance already tra-
versed should be a good estimate of total path length, e(total path length):

e(total path length) = d(already traveled) + e(distance remaining).

where d(already traveled) is the known distance already traveled and where
e(distance remaining) is an estimate of the distance remaining.

Surely it makes sense to work hardest on developing the path with the
shortest estimated path length until the estimate changes upward enough
to make some other path be the one with the shortest estimated path
length. After all, if the guesses were perfect, this approach would keep us
on the optimal path at all times.

In general, however, guesses are not perfect, and a bad overestimate
somewhere along the true optimal path may cause us to wander off that
optimal path permanently.

But note that underestimates cannot cause the ri ht ath to b over-

looked. An undere Ima 0 the distance remainin~ yields an underesti-
mate of total path length, u(total path length):

. u(total path length) = d(already traveled) + u(distance remaining)

where d(already traveled) is the known distance already traveled and where
u(distance remaining) is an underestimate of the distance remaining.

[Now if a total path is found by extending the path with the smallest
underestimate re eatedl no further work need be done once all inc m lete

ath distance estimates are Ion er than some corn lete at distance. This
is rue because the real Istance alon a corn lete ath cannot be shorter
than an underestimate 0 e istance. If all est.imat.es of remaimng Istance

can be g~mates. there can be no bungle)

In traveling throu~h nets of cities, the ~i~ht-line distanse is guaran-
teed to be an underestimate. Figure 4-12 shows how straight-line distance
helps. As befor~, A and D are generated from S. This time D is the node
to search from, since D's lower-bound path distance is 12.9, which is better
than that for A, 13.-4.

Expanding D leads to partial path S-D-A, with a lower-bound distance
estimate of 19.4, and to partial path S-D-E, with a lower-bound distance
estimate of 12.9. S-D-E is therefore the partial path to extend. The result
is a path to B with a distance estimate of 17.7 and one to F with 13.0.

108 CHAPTER Exploring Alternatives4

12.9

2

12.9~' i";' f :'

14==£.-1

:3

u~ ~
13.0

4

Figure 4-12. Branch-and-bound search augmented by underestimates determines
that the path S-D-E-F-G is optimal. The numbers beside the nodes are accu-
mulated distances plus underestimates of distances remaining. Underestimates
quickly push up the lengths associated with bad paths. In this example. many,

,fewer nodes are expanded than with hrrmrh-;mo-hOlmo search operating without
underestimates.

~'

Finding the Best Path

D }- Expand next
\ 4

\
\

!V-~
I \ 8

I \
I \

Figure 4-13. An illustration of the dynamic-programming principl~. The num-
bers beside the nodes are accumulated distances. There is no point to expanding
the instance of node D at the end of S-A-D because getting to the goal via the
instance of D at the end of S-D is obviously better.

Expanding the partial path to F is t}lf~corred move since it is the

partial path with the minimum lower-bound distance. This leads to a
complete path. S-D-E-F-Gtwith a total clistance of 1~ 0 No partial patb
has a lower-bound distance so low. so no further search is required.

In this particular example, a great deal of work is avoided. Here is the
modified procedure:

To conduct a branch-and-bound search with underestimates:

1 Form a queue of partial paths. Let the initial queue consist
of the zero-length, zero-step path from the root node to
nowhere.

2 Until the queue is empty or the goal has been reached,
determine if the first path in the queue reaches the goal
node.

2a If the first path reaches the goal node, do nothing.

2b If the first path does not reach the goal node:
2bl Remove the first path from the queue.

2b2 Form new paths from the removed path by ex-
tending one step.

2b3 Add the new paths to the queue.

i

)

2b4 Sort the queue by the ~OfCOS~~~2.I~.t.e

O
n

/

1 so far and a lower-bound e
.

stimate of the cost

I remazmng, with least-cost pat s m front.
3 If the goal n~has been found, announce success; other-

wise announce failure.

109

110, CHAPTER Exploring Alternatives4

1

2

:3

6

)(x

4

I:
/.J

Figure 4-14. Branch-and-bound searc.h, augmented by dynamic programming,
determines that path S-D-E-F-G is optimal. The numbers beside the nodes are
accumulated distances. Many nodes, those crossed out, are found to be redun-
dant. Fewer nodes are expanded than with branch-and-bound search operating
without dynamic programming.

r
Finding the Best Path

5

6

Figure 4-14. Continued.

Of course, the closer an underestimate is to the true distance, the better
things will work, since if there is no difference at aJl, there is no ch;mce of
developing any false movement. At the other extreme, an underestimate
may be so poor as to be hardly better than a guess of zero, which certainly
must always be the ultimate underestimate of remaining distance. In fact,
ignoring estimates of remaining distance altogether can be viewed as the
special case in which the underestimate used is uniformly zero.

(3) 1J1.#~/c ;'>r'¥jrtJ/J'?/Ntf .

DiscardinK. Redundant Paths Improves Efficiency

Nowlet us consider another way to improve on the basic branch-and-bound
search. Look at figure 4-13. The root node, S, has been expanded, pro-
ducing A and D. For the moment we use no underestimates for remaining
path length. Since the path from S to A is shorter than the path from S
to D, A has been expanded also, leaving three paths: S-A-B, S-A-D, and
S-D. F
9-

111

112 CHAPTER 4 Exploring Alternatives

Thus the path S-D will be the next path extended, since it is the partial
path with the shortest length.

But what about the path S-A-D? Will it ever make sense to extend
. it? Clearly it will not. Since there is one path to D with length 4, it cannot

make sense to work with another path to D with length 8. The path S-A-D

.()jAuA1it'"/)Jz;f~hould be forgotten forever; it cannot produce a winner.
j)hj,c,'/>It> .: This illustrates a general truth[Assume that the path from a starting

point, S. to an intermediate point. L does not influence the choice of paths
for traveling from I to a goal point. G. Then the minimum distance from
S to G through I is the sum of the minimum distance from S to I and the
minimum distance from I to G. Consequently, the dynamic-proQramming
principle holds that when looking for the best path from S to G, all paths
fromS to anv intermediate node. 1. other than the minimum-length path

from S to1. can be irnored]Here is the procedure:

,~

'ii,'1
,"'

','I
,.n

'J1
'!~

r,

To conduct a branch-and-bound search with dvnamic DrO-

~rammmg:

1 Form a queue of partial paths. Let the initial queue consist
of the zero-length, zero-step path from the root node to
nowhere.

2 Until the queue is empty or the goal has been reached,
determine if the first path in the queue reaches the goal
node.

2a If the first path reaches the goal node, do nothing.

2b If the first path does not reach the goal node:

2bl Remove the first path from the queue.

2b2 Form new paths from the removed path by ex-
tendin~ one step.

2b3 Add the new paths to the queue.

2b4 ~ort the queue by cost accumulated so far, with

! , least-cost paths in front.

\ r 2b5 If two or more vaths reach a5!}mmon node,
I i d:erete7mthose p~ the one tharreaches
i ; tFi:'ecommonnodewith the minimum cost.
l
3 If the goal node has been found, announce success; other-

wise announce failure.

"

r
I Finding the Best Path 113

;.
Figure 4-14 shows the effect of using the dynamic-programming princi-
ple, together with branch-and-bound search, on the map-traversal problem.
Four paths are cut off quickly, leaving only the dead-end path to node C
and the optimal path, S-D-E-F-G.

fP-)
A* Is Improved Branch-and-bound Search

The A * vrocedureis~ranch-and-bound search~ith an estimate of remain-
~g distance~combined with the dvnamic-Dfog:ramming:Dfinciple. If the
estimate of remaining distance is a lower bound on the actual distance,
then A* produces optimal solutions. Generally, the estimate may be as-
sumed to be a lower bound estimate, unless specifically stated otherwise,
implying that A*'s solutions are normally optimal. Note the similarity
between A* and branch-and-bound search with dynamic programming:

11.

.

To do A* search with lower-bound estimates:

1 Form a queue of partial paths. Let the initial queue consist
of the zero-length, zero-step path from the root node to
nowhere.

2 Until the queue is empty or the goal has been reached,
determine if the first path in the queue reaches the goal
node.

2a If the first path reaches the goal node, do nothing.

2b If the first path does not reach the goal node:

2b1 Remove the first path from the queue.

2b2 Form new paths from the removed path by ex-
tending one step.

2b3 Add the new pa~hs to the queue.

(2b4 Sort the queueby the sum of~ostaccumulated. -. ~ . , . I
, so far and a lower-boundestzmate of the cost t :J'#AItV? ~ /~;t;,?:y

remaininQ,with least-cost paths in front. ~~/t?)
2b5 If two or more paths reach a common node,

delete all those paths excevt for one that reaches' . taIJ~/r .firt(!~/,!)
the common node with the minimum r.ost.

3 If the goal node has been found, announce success; other-
wise announce failure.

I I
! I
i'

114 CHAPTER 4 Exploring Alternatives

CAp/l:t's .

There Are Many Optimal Search Alternatives

We have seen that there are many ways for searching for optimal paths,
each with advantages, among them the following:

.

The British Museum procedure is good when the search tree is small.
Branch-and-bound search is good when the tree is big and bad paths
turn distinctly bad quickly.

Branch-and-bound search with a guess is good when there is a good

lower-bound estimate of the distance remaining to the goal.

Dynamic programming is good when many paths reach common nodes.

The A* procedure is good when both branch-and-bound search with a
guess and dynamic programming are good.

.

.

.

.

l!l. [DEALING WITH ADVERSARIES)
~//5-/<f~. //:.J'~~

Another sort of search is done in playing games like checkers and chess. The
nodes in a game tree naturally represent board configurations, and they
are linked by way of branches that transform one situation into another, as
figure 4-15 illustrates. Of course, there is a new twist in that the decisions
are made by two people, acting as adversaries, each making a decision in
turn.

The ply of a game tree is p if the tree has p levels, including the root
level. If the depth of a tree is d, then p = d + 1. In the chess literature, a
move consists of one player's single act and his opponent's single response.
Here, however, we will be informal, referring to one player's single act as
his move.

Games Require Different Search Procedures

Using the British Museum procedure to search game trees is definitely
out. For chess, for example, if we take the effective branching factor to
be something like 16 and the effective depth to be 100, then the number
of branches in an exhaustive survey of chess possibilities would be on the
order of 10120, a ridiculously large number. In fact, if all the atoms in the

. universe had been computing chess moves at picosecond speeds since the
big bang (if any), the analysis would be just getting started.

At the other end of the spectrum, if only there were some infallible
way to rank the members of a set of board situations, it would be a simple
matter to play by selecting the move that leads to the best situation that
can be reached by one move. No search would be necessary. Unfortunately,
no such situation-ranking formula exists. When board situations obviously
differ, then a simple measure like piece count can' be a rough guide to
quality, but depending on such a measure to rank the available moves from
a given situation produces poor results. Some other strategy is needed.

Dealing with Adversaries

Original board situation

New board situations

New board situations

Figure 4-15. Games provide a search environment with a new twist, competition.
The nodes represent game situations, and the branches represent the moves that
connect them.

a Maximizing level

Minimizing level

Maximizing level
7 82

Maximizing levelb

Maximizing level

Minimizing level

2 7 8

:Y1aximizing levelc

:Y1aximizing level

:Y1inimizing level

2 7 8

Figure 4-16. Miriimaxing is a method for determining moves. Minimaxing em-
ploys a static evaluator to calculate advantage-specifying numbers for the game
situations at the bottom of a partially developed game tree. One player works
toward the higher numbers, seeking the advantage, while the opponent goes for
the lower numbers.

115

