Machire N.@si\{

b: b\lj QR\\\

Mchad sk
(783

& jence App ach

@Tmm\Qw\\) \S\,wmg,

15

LEARNING EFFICIENT
CLASSIFICATION PROCEDURES
AND THEIR APPLICATION TO
CHESS END GAMES

J. Ross Quinlan
The Rand Corporation

ABSTRACT

A series of experiments dealing with the discovery of efficient classifica-
tion procedures from large numbers of examples is described, with a case study
from the chess end game king-rook versus king-knight. After an outline of the
inductive inference machinery used, the paper reports on trials leading to correct
and very fast attribute-based rules for the relations lost 2-ply and lost 3-ply. On
another tack, a model of the performance of an idealized induction system is

developed and its somewhat surprising predictions compared with observed

results. The paper ends with a description of preliminary work on the automatic
Specification of relevant attributes.

15.1 INTRODUCTION

This paper reports on experiments that recover valuable information from
large masses of low-grade data by a process of inductive inference. The data are
telatively unstructured examples and counterexamples of a concept of con-
Siderable complexity. The information that is sought is a means of identifying
®Xamples of the concept or, in other words, a classification rule. The distin-
mEmE:m characteristics of this work are the large numbers of examples employed

n forming the concepts and the computational efficiency of the classification

WNles discovered in this way as compared with other classification methods for
the same task. (In one case, the classification rule is five times as fast as the
best alternative method that I could devise.)

B i 463

464 CHAPTER 15: LEARNING EFFICIENT CLASSIFCATION PROCEDURES

The concepts o be developed have been drawn [rom the chess end game
king-rook versus king-knight, which can be difficult even for masters [Kopec &
Niblett, 1980]. This end game has proved to be an exccllent testing ground,
providing classification tasks of a range of difficulties and a large underlying
universe of more than a mitlion possible configurations of pieces. However. it
should be noted that the inductive inference machinery that has been developed
is in no way tied to this application, and is currently being used by other workers
for a different aspect of chess [Shapiro & Niblett, [982] and in a mcdical
domain [Bratko & Mulec, 1981].

The induction algorithm used for this project is called 1D3. D3 (akes ob-
jects of a known class described in termis ol a fixed collection of propertics or
attributes, and produces a decision trec over these attributes that correctly clas-
sifics all the given objects. Two qualities differentiate it from other general-
purposc infercnce systems such as INDUCE [Michalski, 1980], SPROUTER
[Hayes-Roth & McDermott, 1977] and TinoTtH-p [Vere, 1978]. The first con-
cerns the way that the effort required to accomplish an induction task grows with
the difficulty of that task. ID3 was specifically designed to handic masses of
objects, and in fact its computation time increases only lineatly with dilficulty as
nodeled by the product of:

e the number of given exemplary objects,

o the number of attributes used to describe objects, and

e the complexity of the concept to be developed (measured by the number of
nodes on the decision tree)

[Quinlan, 1979a]. On the negative side, this lincarity is purchased at the cost of

descriptive power. The concepts developed by 103 can only take the form ol
decision trees based on the attributes given, and this “Janguage” is much mor¢
restrictive than the first-order or nmltivalued logic in which the above systems
express concepts. [Dictterich & Michalski, 1979} gives an analysis and survey of
inductive inference methodologies.

The main body of this report contains [our sections. The first, Section
15.2, introduces 103 as a descendant of Hunt’s Concept Learning System (CLS)-
Scction 15.3 summarizes applications of ID3 to discovering decision trees for the
relations “knight’s side is lost n-ply” where n is 2 or 3; detailed accounts appedr
itr [Quinlan, 1979b; Quinlan, 1980]. The last two scctions deal with recent work
along different dimensions. Section 15.4 considers the question of discovering
approximate rather than exact rules. Tt develops a model of how an idealized
induction system might bchave when shown only a fraction of all possible ob-
jects, and compares the predictions of this model to observed results. Section
15.5 tackles the probicm of defining features used to describe objects, and out:
lines techniques aimed at automating the discovery of the attributes themselves.

e it e

sttt el s it T Wttt Mt e e et e

_
|
_
|
_,
|
|
|
&_.

QUINLAN 465

15.2 THE INDUCTIVE INFERENCE MACHINERY

D3, a descendant of Hunt's CLS [Hunt er al., 1966}, is a comparatively
simple mechanism for discovering a classification rule for a collection of objects
belonging to two classes. As mentioned above, each object must be described in
terms of a fixed set of attributes, cach of which has its own (small) set of pos-
sible attribute values. As an illustration, “color” and “baud rate” might be at-
tributes with sets of possible values {red,grecn,blue} and
{110,300, 1200,2400,4800} respectively.

A classification rule in the form of a decision trec can be constructed for
any such collection C of objects. 1f C is cnipty then we associate it arbitrarily
with either class. If all objects in C belong to the same class, then the decision
tree is a leal bearing that class name. Otherwise C contains representatives of
both classes; we select an attribute and partition C into disjoint sets C, C,, ...,
C, where C; contains those members of C that have the i value of the sclected
attribute. Each of these subcollections is then handled in turn by the same rule-
forming stratcgy. The eventual outcome is a tree in which cach lcaf carries a
class name. and cach interior node specifics an attribute to be tested with a
branch corresponding to each possible value of that attribute.

To illustrate this process, consider the collection C below. Each object is
described in terms of three attributes: “height” with values {tall,short}, “hair”
with values {dark,red,blond} and “eyes” with values {bluc,brown}, aund is fol-
lowed by *+ or *— to indicate the class to which it belongs.

tall,dark ,brown: -~
short,blond .brown: —

short.blond,blue: + short,dark ,blue: —
tall,dark .blue: —

tall,blond blue: +

tail,blond ,brown: -
tall,red, blue: +

If the second attribute is selected to form the root of the decision tree, this yields
the trec shown in Figure 15-1. The subcollections corresponding to the valucs
‘dark’ and ‘red’ contain objects of only a single class, and so require no further
work. If we select the third attribute to test for the ‘blond’ branch, this yields
the trec in Figure 15-2. Now all subcollections contain objects of one class, so
We can replace cach subcollection by the class name to get the decision tree
shown in Figure 15-3.

An object is classified by starting at the root of the decision tree, finding
the value of the tested attribute in the given object, taking the branch appropriate
to that value, and continuing in the same fashion until a leaf is reached. Notice
that classifying a particular object may involve cvaluating only a small number
of the attributes depending on the fength of the path from the root of the tree to
the appropriate leal. In the above case, the lirst step is always to inquire about
the value of an object’s “hair” attribute. 1f this value is “dark” or “red” the
Object can Be classificd immediately without looking at its other attributes. Il the
Value s ‘blond’ then we miust determine its value of “eyes” before classifying it.
We never need to determine the value of the “height” attributc.

466 CHAPTER 15: LEARNING EFFICIENT CLASSIFCATION PROCEDURES

hair

dark red blond

short, blond, blue: +
tall, blond, brown: -
tall, blond, blue: +
short, blond, brown: -

short, dark, blue: - * tall, red, blue: + M

tall, dark, blue: -
tall, dark, brown: -

Figure 15-1: One-level decision tree.
hair
red blond

dark

eyes

short, dark, blue: - # tall, red, blue: + M
tall, dark, blue: -
tall, dark, brown: -

blue brown

tall, blond, brown: - *

short, blond, blue: +
short, blond, brown: -

tall, blond, blue: +

b

Figure 15-2: Two-level decision tree.

This rule-forming procedure will always work provided that there are not
two objects belonging to different classes but having identical values for cach
attribute; in such cases the attributes are inadequate for the classification task:
However, it is generally desirable that the tree be able to classify objects which
were not used in its construction, and so the leaves corresponding to an empty

set of examples (where a class is chosen randomly) should be kept to 2 min-
imum. If we adopted the simple-minded algorithm:
“Select the first attribute for the root of the tree, the
second attribute for the next level, and so on.”
in the

the result would tend towards the complete tree with a leaf for each point
attribute spacc—clearly an unsatisfactory situation. The whole skill in this m%w
of induction lies in selecting a usclul attribute to test for a given collection 0

e s e Wbt Aoy N> et it o S S i, e

e

- " - ~ - N S

|

INL
QUINLAN 467

hair

dark red

®

blond

©

eyes
i /oi:
® O

objects so that the final tree is in some sense minimal. Hunt’s work used a
*oo_S:ama scheme driven by a system of measurement and misclassification costs
In an attempt to get minimal-cost trees. ID3 uses an information-theoretic ap-
proach aimed at minimizing the expected number of tests to classify an object

. A decision tree may be regarded as an information source that, m?o: an
object, generates a message which is the class of that object (“plus” or “minus”
say). The attribute selection part of ID3 is based on the plausible assumption H:mw
the .co:%_aiQ of the decision tree is strongly related to the amount of infor-
mation conveyed by this message. If the probability of these messages is p™
and p~ respectively, the expected information content of the message is

Figure 15-3: Deeision tree with elass names.

—p*logy pt —p-logyp
With a known set C of objects we can approximate these probabilities by relative
frequencies, so that p+ becomes the proportion of objects in C with class “plus”.
So we will write M(C) to denote this calculation of the expected information
Content of a message from a decision tree for a set C of objccts, and define M(
) = 0. Now consider as before the possible choice of A as the attribute to
32. next. The partial decision tree is shown in Figure 15-4. The values A; of
attribute A are mutually exclusive (even though different attributes may not mnv
%0 the ncw expected information content will be: ,

B(C,A) = (probability that value of A is A;) X M(C))

Where mmi.: we can replace the probabilities by relative frequencies. The sug-
Eested choice of attribute to test next is that which gains the most information, in
Other words, for which

M(C) — B(C,A)

8 maximal.

468 CHAPTER 15: LEARNING EFFICIENT CLASSIFCATION PROCEDURES

attribute

A
M " /
C2 Cn

Partial decision tree.

C1

Figure 15-4:

To illustrate the idea, consider the choice of the first attribute to test from
the example given earlicr. The collection C of objects contains 3 in class ‘+’

¢ >

and 51in ‘=, so

M(C)= — 3/8 log, 3/8 — 5/8 log, 5/8
= 0.954 bits
Testing the first attribute gives the results shown in Figure 15-5. The infor-
mation still needed for a rule for the “tall” branch is:
— 2/5 log, 2/5 — 3/5 logy 3/5 = 0.971 bits
and for the “short” branch:
— 1/3 log, /3 — 2/3 log, 2/3 = 0.918 bits
Thus the expected inforimation content:
B(C,“hcight”)= 5/8 * 0.971 + 3/8 * 0.918
= 0.951 bits
The information gained by testing this attribute is:
0.954 — 0.951 = 0.003 bits
which is negligible. The tree arising from testing the sccond attribute was given
previously. The branches for “dark™ (with 3 objects) and “red” (1 object) require
no further information, while the branch for “blond” contained 2 “plus” and 2
“minus” objects and so requires 1 bit. We have:
B(C,“hair”y= 3/8 *0 + 1/8* 0 + 48 * |
= (.5 bits
and the information gained by testing “hai™ is 0.954 — 0.5 = 0.454 bits. In?
similar way the information gained by testing “eyes” comes (o 0.347 bits. Thus
the principle of maximizing expectcd information gain would lead D3 to seledt

“hair” as the attribute to form the root of the decision trec.
The procedure described above for constructing decision trees assumes that

5

QUINLAN 469
_ height
_
_ tall short
_ , tall, blond, brown: - short, blond, blue: +
tall, red, blue: + short, dark, blue: -
tall, dark, blue: - short, blond, brown: -
tall, blond, blue: +
w tall, dark, brown: -
u Figure 15-5: Binary attribute discrimination.
u mocszsm operations on the sct of objects C (such as determining the number of
_ plus” objects with value A; of attribute A) can be performed efticiently, which
means in practice that C has to be kept in fast memory. What happens if the
u size of C precludes this? One way around the difficulty is given by the version
4 space strategy [Mitchell, 1979] in which C is digested one objcct at a time.

Such an approach depends on maintaining two sets S and G of maximally
{ specific and maximally general rules that could account for all objects seen so
‘ far; these sets delimit all possible correct rules. However, when the rule is a

decision trce over a large attribute space, the sizes of S and G will also become
=.=Bm:mmcm_v_o. The line taken in ID3 is an tterative one which forms a succes-
sion ol decision trees of (hopefully) increasing accuracy, until one is found that
_ 1§ entirely accurate. The method can be summarized as:

_ ozm_oo:_:s:m_c_:mmccmnﬂc::nm?o:w:.ﬁm:com2m:m&50$§m.e§
® repeat
o form a rule to explain the current window
o find the exceptions to this rule in the remaining instances
_ o form a new window from the current window and the exceptions to
the rule generated from it

until there are no exceptions to the rule

The process ends when a rule is formed that has no exceptions and so is correct
- for m.: of C. Two different ways of forming a new window have been tried. In
- the first, the current window is enlarged by the addition of up to some specified
E:.:UQ of exceptions, and so the window grows. The second method attempts
Muoaosna\ :_8%,., objects E the current window and replace the rest with excep-
Emmm_, Ecm\roo?:m. Em E_:Q.c.i m.mxo oc:mx::.. Both methods were explored in
moo,,oi:q a :c:-:_s.& classification va_o_s involving 14 attributes and necarly
_,o objects ?.n f:_w: a correct decision tree contained 48 nodcs [Quinlan,
79a]. The main findings were:

470 CHAPTER 15: LEARNING EFFICIENT CLASSIFCATION PROCEDURES

e The mcthods converge rapidly; typically only 4 iterations were required to
find a correct decision tree.

e [t was possible to develop a corrcct tree from a final window containing
only a small fraction of the 2,000 objects.

e The process was not very sensitive to parameters such as the initial win-
dow size.

e The time to obtain a correct decision tree for a classification problem in-
creascs linearly with the difficulty of the problem as defined by the simple
model given in the introduction.

These features, particularly the last, have enabled D3 to discover correct decision
trees for some very large classification problems.

15.3 THE LOST N-PLY EXPERIMENTS

One application of ID3 has been to discover classification rules for part of
the end game (white) king-rook versus (black) king-knight. The relations com-
pleted are “knight’s side is lost (in at most) n-ply” for n=2 and n=3; the 4-ply
case is currently being tackled. The formal definition of “lost n-ply” is:

1. A black-to-move position is lost O-ply if and only if

a. the king is in checkmate, or
b. the knight has been captured, the position is not stalemate, the white
rook has not been captured and the black king cannot retaliate by
capturing it.
2. A white-to-move position is lost n-ply (n odd) iff there is a white move
giving a position that is lost n—1 ply.
3. A black-to-move position is lost n-ply (n even) iff all possible black moves
give positions that are lost n—1 ply.
These definitions ignore the repetition and 50-move rules of chess, but are quite
accurate for small values of n.

The obvious question is, why bother looking for classification rules whet
simple algorithms such as minimax will decide whether a position is lost n-ply’
The answer is that a decision tree will classify a position in terms of its
properties rather than by exploring the game tree. If attributes can be found that
are adequate for this classification task and that are also relatively cheap to com
pute, then the classification of a position in terms of thesc attributes might well
be faster than the minimax search of the game tree.

There are more than 11 million ways of placing the four pieces to fornt ?
legal black-to-move position; the corresponding figure for white-to-move is mor
than 9 million. (The difference arises because, for instance, the white king ¢a%
not be in check in a black-to-move position.) These counts include many sy™"
metric variants of cssentially the same position, and when these are removed the

e N Nt s S ettt P\ ™

e | —————— e e ™

QUINLAN — 471

numbers become approximately {.8 million and 1.4 million, respectively. About
69,000 of the 1.8 million black-to-move positions are lost 2-ply, while roughly
474,000 of the 1.4 million white-to-move positions are lost 3-ply.

The first attempt at the lost 2-ply relation was made with a set of 25 at-
tributes. 18 of these were low-level geomeltric properties of a position, such as:

the distance from the black king to the knight
hl
with values “1”, “2” and “>2" king-moves, and:
the two kings are on opposite sides of and next to a row or column
occupied by the rook
f:r values “true” and “false”. The remaining 7 attributes were somewhat
higher-level and involved more computation, for example:

the only move the black king can make creates a mating square for
the rook

The attribute space with 36 x 219 points was much larger than the number of
black-to-move positions. However, many different positions led to the same
vector of attribute values; and, in fact, the 1.8 million positions dwindled to just
under 30,000 distinct vectors. An implementation of 1D3 coded in Pascal for a
DEC KL-10 found a correct decision tree of 334 nodes in 144 seconds.

A sccond attempt was made on this problem in order to try out a differcnt
style of attribute, and to remove a minor inadequacy of the first set of attributes
affecting a handful of positions. 1Instead of being for the most part low-level and
geometric, the new attributes were all high-level, truth-valued features signaling
key patterns of pieces on the board. Each of the 23 attributes was meant to
Capture some important mechanism of the lost 2-ply classification task. For ex-
ample, one of the attributes took the value “truc” if the position was of one of
En forms shown in Figure 15-6. This attribute was intended to detect some
m_E.m:c:m in which the black king cannot move safely. As expected, these new
m:q._g:om were more directly pertinent to the classification problem than were
En_.q.mg:_o:.mo predecessors. They had the effect of compressing all possible
Posttions into a smaller set of 428 distinct vectors. The same implementation of
3 found a decision tree containing 83 nodes in less than 3 seconds.

These trials resulted in two decision trees for classifying an arbitrary black-
fo-move position as lost 2-ply or not. Their performance was then compared to
E\.c.ozﬁﬁ means of arriving at the same classification. The first of these was the
Minimax search mentioned previously, which simply mirrors the definition of
lost n-ply. The second was a “smiarter” classification method called specialized
Search which examincs only part of the game tree. For instance, to deterniine
Whether a position is lost I-ply we only have to consider white moves that cap-
tre the knight or white rook moves to the cdge of the board (for a possible
Mate). Specialized search thus employs domain knowledge; it is harder to write
and debug than minimax, but is much faster.

For the purposes of comparison, all methods were implemented in Pascal.

