500 CHAPTER |8, CONNECTIONIST MODELS

Vo
AN
N XX vy XOR v,y
AN O 0 0 0
AN 0 \ 1
N AN 1 0 |
AN 1 1 0
N N N
AN —@— — -
AN N 4
AN

Figure 18.12: A Classification Problem, XOR, That Is Not Lincarly Separable

Figure 18.13: A Multilayer Perceptron That Solves the XOR Problem

The perceptron ...has many features that attract attention: its linearity,
its intriguing learning theorem ... there is no reason to suppose that any
of these virtues carry over to the many-layered version. Nevertheless, we
consider it to be an important research problem to elucidate (or reject) our
intuitive judgement that the extension is sterile.

Despite the identification of this “important research problem,” actual research in
perceptron learning came to a halt in the 1970s. The field saw little interest until
the 1980s, when several learning procedures for ilayer perceptrons—also called
multilayer networks—were propased. The next few sections are devoted to such learning

]\ll»\!
procedures.

/ . .
Hli L fhplty T35y
Tt pmie, 5.
As suggested by Figure 18.8 and the Perceptrons critique, the abili i
networks is an important step in the direction of building intelligent machines from
neuronlike components. Let’s reflect for a moment on why this is so. Our goal is to

18.2.2 Backpropagation Networks

i
1

[

182, LEARNING IN NEURAL NETWORKS 501

take a relatively amorphous mass of neuronlike elements and teach it to perform useful
tasks. We would like it to be fast and resistant to damage. We would like it 1o generalize
from the inputs it sees. We would like to build these neural masses on a very large scale,
and we would like them to be able to learn efficiently. Perceptrons got us part ol the
way there, but we saw that they were too weak computationally. So_we {urm 1o more

complex, multilayer networks.

What can a multilayer network compute? The simple answer is: anyrhing! Given

a set .mﬂﬂw‘:? we can use summation-threshold units as simple AND. OR, and NOT
gates by appropriately setting the threshold and connection weights. We know that we
can build any arbitrary combinational circuit out of those basic logical units. In fact, if
we are allowed to use feedback loops. we can build a general-purpose computer with
them.

The major problem is learning. The knowledge representation system employed
by neural nets is quite opaque: the nets must learn their own representations because

programming them by hand is impossible. Pereeptrons had the nice w.:%m:v\ that

whatever they could compute, they could learn to compute. Does this property extend
to multilayer networks? The answer is yes, sort of. Backpropagation is a step in that
direction.

It will be useful to deal first with a subclass of multilayer networks, namely fully
connected, layered, feedforward :QE@VV sample of such a network is shown in
Figure 18.14. 1In this figure, x;. f;, and o; represent unit activation levels of input,
hidden, and output units. Weights on connections between the input and hidden layers
are denoted here by wly;, while weights on connections between the hidden and output
layers are denoted by w2;. This network has three layers. although it is possible and
sometimes useful to have more. Each unit in one layer is connected in the forward
divection to every unit in the next layer. Activations flow from the input layer through
the hidden layer, then on (o the output layer. As usual, th

computation. Because activations flow in only one direction, there is no need for

i M hbbdhr

an iterative relaxation process. The activation levels ol the units in the output layer
ke e ayer

determine the output of the network.
" The existence of hidden units allows the network to de

tectors, or internal representations. Figure 18.15 shows the application of a three layer
network to the problem of recognizing digits. The two-dimensional grid containing the
numeral “7” forms the input layer. A single hidden unit might be strongly activated
by a horizontal line in the input, or perhaps a diagonal. The important thing to note
is that the behavior of these hidden units is automatically learned, not preprogrammed.
In Figure [8.13, the input grid appears to be laid out in two dimensions, but the fully
connected network is unaware of this 2-D structure. Because this structure can be im-
portant, many networks permit their hidden units to maintain only local connections to
the input layer (e.g., a different 4 by 4 subgrid for each hidden unit).

The hope in attacking problems like handwritten character recognition is that the
neural network will not only learn to_clasgif’ ioputs it is trained on but that it
will generalize and be able to classify inputs that it has not yet seen. We return to
generalization in the next section,

A reasonable question at this powt is: “All neural nets seem to be able to do

o
=
o
]

18.2. LEARNING IN NEURAL NETWORKS

502 CHAPTER I8 CONNECTIONIST MODELS m
i
’ '
0
|
“ ot
» » » output O O
@ @ @ output units . (\‘(
_ o Co%
| A LN
:m:. m
hidden O .
@ @ @ T 6 hidden units
=5/ K wl y
P AM\\:LV
T A \\4\\ A“/A
iy At . |
"AOOOD O e
W,.._u nput

Figure 18.14: A Multilayer Network

is classification. Hard Al problems such as planning, natural language parsing, and
(heorem proving are not simply classification tasks, so how do connectionist models
address these problems?” Most of the problems we see in this chapter are indeed
classification problems, because these ar that neural :@EE_AEH
suited to handle at present. A major limitation of current network formalisms is how
they deal with phenomena that involve time. This limitation is lifted to some degree in
work on recurrent networks (see Section 18.4), but the probiems are stiff severe. Hence,
we concentrate on classification problems for now. o

Let’s now return to backpropagation networks. The unit in a backpropagation !
network requires a slightly different activation function from the perceptron. Both

Ficure 18.15: Using a Mullifayer Network to Learn to Classify Handwritten Digits

functions are shown in Figure 18.16. A backpropagation-uni eighted 1.0 10
inputs, but unlike the perceptiron. it produces a real value between () and § as output,
based on a sigmoid (or S-shaped) function, which is continuous and differentiable, as 0.5 0.5
required by the backpropagation algorithm. Let ,EEE& .
to a unit. The equation for the unit’s output is given by:
. outpur = T o v A . .
, ~ , Figure 18.16: The Stepwise Activation Function of the Perceptron (/eff), and the Sigmoid

Notice that if the sum is O, the output is 0.5 (in contrast to the perceptron, where it must
be either O or 1). As the sum gets larger, the outpul approaches [. As the sum gets i
smaller, on the other hand. the output approaches 0.

Activation Function of the Backpropagation Unit (right)

504 CHAPTER 18. CONNECTIONIST MODELS

Likc a pereeptron. a backpro

set of w C:_:J The network &::Lwl:ff%mm,:? each time it sees_an input-output ?:w
Each pair requires two stages: d forward pass. 4 J:Gu ‘a backward pas§d The forward pass
involves presenting a sample input to the network and letting activations flow until they

each the dutput ?%m?&u:::m the backward pass, the network’s actual output (from the

325:& pass) is compared with the target output and-error estimate$ are computed for
the output units. The weights connected to “the oufput tnifs inC

djunsied_in order to

reduce those errors.

We can then use the error estimates of the o:€:_ units to derive

ﬂ!@_,mo.m(ov:B&mv for the units in the hidden layers. Finally, errors are propagated back (o

the connections stemming trom the input units.

Unlike the perceptron learning algorithm of the last section, the backpropagation
algorithm usually cbl.:cw its weights incrementally, after seeing each input-output pair.
ATter it has seen all the” :%:T\EMH\?:? (and adjusted its weights that many times),
we say that one epoch has been completed. Training a backpropagation network usually
requires many epochs.

Refer back to Figure 18.14 for the basic structure on which the following algorithm
is based.

Oo::::o Aset of im_m.: s for a three- r_ er_network that maps inputs onto corre-

sponding oufpufs.

1. Let A be the number of units in the input layer, as determined by the length of
the training input vectors. Let C be the number of units in the output layer. Now
choose B, the number of units in the hidden layer.? As shown in Figure 18.14, the
input and hidden layers each have an extra unit used for thresholding; therefore,
the units in these layers will sometimes be indexed by the ranges (0,..., A) and
(0,...,B). We denote the activation levels of the units in the input layer by x;,
in the hidden layer by /;;, and in the output layer by ¢;. Weights connecting the
input layer to the hidden layer are denoted by w'l,;, where the subscript i indexes
the input units and j indexes the hidden units. Likewise, weights connecting the
hidden layer to the output layer are denoted by w2;, with / indexing to hidden
units and j indexing output units.

2. H::E:Nn the weights in the network. Each weight should be set randomly to a

0.1,0.1) forall

I
>

wly; = random(—

I
<

S

i

[

w2, = random(— forall 7

i

0.1,0.DH

3. Initialize the %:5303 of'the F:_@w:o_a_:c units. The values of these thresholding

units should never r:u:o@

182, LEARNING IN NEURAL NETWORKS 505

Xg = 1.0 1
ﬂ

ho=1.0

4. Choosc an input-output pair. Suppose the input vector is x; and the target output
vector 18 y;. Assign activation levels to the inpur units.

5. Propagate the activations from the units in the input layer to the units in the hidden
layer using the activation function of Figure 18.16:
N
l .
hj= —————— forall

_+m1M

j=1.....B

——————s

Note that 7 ranges from 0 to A. wl Lo 1 :E thresh E_:
(its propensity to fire irrespective’ of its 5@53

6. Propagate the activaiions from the units in the hidden layer to the units in the
output layer.
4 ’
P ge o E»\Swt

———;——— forall Hﬂ

Again, the thresholding weight w2q; for output unit / plays a role in the weighted
summation. fy is always 1.0.

Errors are gfoa

7. Compute the errors? of the units in the output layer, denoted §2,.
on the network’s actual output (0;) and the target output (y;).

. r\\ﬁ.‘_\—\h\ \\\»\&\.NJ »M\NV‘K\“ WA.\,Y r:e,\wdm\,tn_l
— o) forall j=1.....C

ﬂ\mm\. = 0,1 — oy

[—

8. ﬁo::#:o the errors of the units in the hidden layer. denoted 8 1;.

_\

CAVW Rl S .T\ Lo ot 1

Bl = Al = k)Y 82wy Jor all \.J_:.;w B

s s

i=l I

9. >&:£ the weights between the hidden Ev\w_‘ and o:::: _mv\oﬂ 3 The learning rate

“The error formula is related 10 the derivative of the activation fu netion,

behind the backpropagation learning algorithm is beyond the scope of this book.

The mathematical derivation

S Again, we omit the details of the derivation. The basic idea is that each _:mEn: unit tries to minimize the
_errors of output units to which it connects. .

-

-

506 CHAPTER 1S CONNECTIONIST MODELS

(Awd, = 82y forall i=0.....B. j=1...C

(.

10. Adjust the weights between the input layer and the hidden layer.

m? p=n 81, dforall i=0..

LA =108

1. Go 10 step 4 and repeat. When all the input-output pairs have been presented to
the network, one epoch has been completed. Repeat steps 4 to 10 for as many

. S e
epochs as desired. '€

The algorithm generalizes straightforwardly to networks of more than three | .ﬁ&m_.m.o

For each extra ::_an: _3@. insert a forward propagation step between steps 6 and 7,
||||||||||||| between steps 8 and 9, and a weight adjustment step between

ﬁnplpglzh-_ 1. m:oﬁ computation for hidden units should use the equation in step 8,
but with / ranging over the units in the next layer, not necessarily the output layer.
The speed of learning can be increased by modifying the weight modification steps

9 and 10 to include a momentum term o The weight update formulas become:
R

DSAN_.\:lf 1) =N - @N\ .\3 + QDSDM\AD
Awlr+ D) =n 81, x5+ aAwly

where 1;, v, 81, and 82; are measured at time 1+ 1. Aw;(¢) is the change the weight
nxnr:n:roa a:::: the previous forward- backward pas$:If o Tsset 10 U907 80, Tcarning
speeds _3?“3\& T —

Recall that the activation function has a sigmoid shape. Since infinite weights would
be required for the actual outputs of the network to reach 0.0 and 1.0, binary target
outputs (the y;’s of steps 4 and 7 above) are usually given as 0.1 and 0.9 instead. The
sigmoid is required by backpropagation because the derivation of the weight update rule
requires that the activation function be continuous and differentiable

The derivation of the weight update rule is more complex than the derivation of the

N,

fixed-increment :m ate rule for perceptrons, but the idea is much the same. There 1s

—_ —

an error function that defines a surface over weight space, and the weights are modified

in Thie direction of the gradient of the surface. See Rumelhart er af. [1986] for details.
IntErestingly, he error surface for multilayer nets is more complex than the error surface
for perceptrons. One notable difference is the existence of /ocal minima. Recall the

bowl-shaped space we used to explain perceptron learning (Figure 18.10). As we

fA :m_ic_r with one ::Er: _rQr_ can r:_:s—:n any funetion that a :n:zo_‘r with many hidden E%m? can

Ea 1o Jm?:s:m with a series o straight lines.
_x. best results have come from letting OLbe zero for the first few training passes, then increasing
¢. This process first gives the algorithm some time to ind a good general direction,
ection with some extra speed.

T ———
and Then moves it in that

|
|
i

18.2. LEARNING IN NEURAL NETWORKS 507

modified weights, we moved in the direction of the bottom of the bowl: eventually, we
reached it. A backpropagation network. however, may slide down the error surface into
a sel of weights that does not solve the problem it is being trained on. If that set of
weights is at a local minimum, the network will never reach the optimal set of weights.
Thus, we have no analogue of the perceptron convergence theorem for backpropagation
networks.

There arc several methods of ove rcoming the problem of local minima. The mo-

mentum factor o, which tends to keep the weight changes.moving ig the same Q_?r:c:.

u:os}_ the m?oa::: to mw% over s small 5:::5 Simnlated :::E\:E a_mo:foa _..:oﬁ in

can have an m:oﬁ on :ﬁ :n;\o; S v:vnmnzv::v\ to _QQ: minima.
Fortunately, backpropagation networks rarely

ip into local minima. It turns out

that, especially in larger networks, the high-dimensional weight space U_‘o<_amm plenty of
degrees of freedom for the algorithm. The lack of a convergence theorem isnota problem

in practice. However, this pleasant feature of U%wwqonamm:o: was not discovered until
recently, when digital computers became fast enough to support large-scale simulations
of neural networks. The backpropagation algorithm was actually derived independently
by a number of researchers in the past, but it was discarded as many limes because of
the potential problems with local minima. In the days before fast digital computers,
researchers could only judge their ideas by proving theorems about them. and they had
no idea that local minima would turn out to be rare in practice. The modern form of
backpropagation is often credited _.wbw\o_vcf [1974], LeCun [1985], Parker [1985], and
Rumelhart eral. [1986].

Backpropagation networks are not without real problems, however, with the most
serious being the slow speed of learning. ‘Even simple tasks require extensive training
periods. The XOW‘@@mﬂyzn_m involves only five units and nine weights,
but it can require many, many passes through the four training cases before the weights
converge, especially if the learning parameters are not caretully tuned. Also, simple
backpropagation does not scale up very well. The number of training examples Rclcmﬂa
is superlinear in the size of the network.

Since backpropagation is inherently a parallel, distributed algorithm, the idea of
improving speed by building special-purpose backpropagation hardware is attractive.
However, fast new variations of backpropagation and other learning algorithms appear
frequently in the literature, e.g., Fahlman [1988]. By the time an algorithm s transformed
into hardware and embedded in a computer system, the algorithm is likely to be obsolete.

18.2.3 Generalization

If all possible inputs and outputs are shown to a grw?onpa;:o: network, the network

will (probably, eventually) find a set of weights the inputs onto the outputs.
For many Al problems, however, it is impossible to give all possible inputs. Consider

face recognition and character recognition. There are an infinite number of orientations
and expressions to a face, and an infinite number of fonts and sizes for a character, yet
humans learn to classify these objects easily from only a few examples. We would :onm
that our networks would do the same. And, ur fact, backpropagation s

a generalization mechanism. If we work in a'domain (such as the L?Z:S:oz domains
just discussed) where similar inputs get mapped onto similar outputs, backpropagation

