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AI for Global Disease 
Surveillance

Hsinchun Chen and Daniel Zeng, University of Arizona

outbreaks are a key public-health priority and are 
driving an emerging fi eld of multidisciplinary re-
search. Recent health threats to large populations 
around the world include the Severe Acute Re-
spiratory Syndrome (SARS) epidemic in Asia; the 
outbreak of avian fl u in East Asian countries; this 
year’s global swine fl u (H1N1); the catastrophic 
aftereffects of Hurricane Katrina in New Orleans; 
and, since the anthrax attacks in the US in October 
2001, the ever-pending threat of bioterrorism.

Disease surveillance has been practiced for de-
cades and continues to be an indispensable ap-
proach for detecting emerging disease outbreaks 
and epidemics. Early knowledge of a disease out-
break plays an important role in improving re-
sponse effectiveness. Although traditional dis-
ease surveillance often relies on time-consuming 
laboratory diagnosis, and the reporting of notifi -
able diseases is often slow and incomplete, a new 
breed of global disease surveillance systems has 
the potential to signifi cantly speed up detection 
of disease outbreaks. These new, computer-based 
surveillance systems offer valuable and timely 
information to hospitals as well as to state, lo-
cal, and federal health offi cials. They often rely 
on intelligent systems and databases, infectious-
disease informatics, and advanced analytic tech-
niques such as time-series analysis, text mining, 
agent-based modeling, social-network analysis, 
and disease modeling, visualization, and mapping. 

With these new advances, public-health surveil-
lance systems are capable of real-time or near real-
time detection of serious illnesses and potential 
exposure to agents of bioterrorism, allowing for a 
rapid public-health response.

The basis for modern global disease surveil-
lance is the fact that specifi c diseases of inter-
est can be monitored through various syndro-
mic presentations that can be detected in a timely 
manner—for example, through nurse calls, med-
ication purchases, and school or work absentee-
ism. In addition to enabling early detection and 
reporting of monitored diseases, syndromic sur-
veillance also provides a rich data repository and 
highly active communication system for situation 
awareness and event characterization. Multiple 
participants provide interconnectivity among dis-
parate and geographically separated sources of in-
formation to facilitate a clear understanding of the 
evolving situation. This is important for event re-
porting, strategic response planning, and disaster 
victim tracking. Information gained from syndro-
mic surveillance data can also guide the planning, 
implementation, and evaluation of long-term pro-
grams to prevent and control diseases, including 
distribution of medication, vaccination plans, and 
allocation of resources.

In recent years, researchers have proposed sev-
eral syndromic surveillance approaches. Accord-
ing to a study conducted by the US Centers for 
Disease Control and Prevention (CDC) in 2003, 
roughly 100 sites throughout the US have imple-
mented and deployed syndromic surveillance 
systems.1 These systems, although sharing similar 
objectives, vary in system architecture, information 
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processing and management tech-
niques, and algorithms for anom-
aly detection, and they have differ-
ent geographic coverage and disease 
focuses. A recent article by Yan, 
Chen, and Zeng provides an in-depth  
survey that analyzes and evaluates 
existing syndromic surveillance sys-
tems and related outbreak modeling 
and detection work under a unified 
framework.2 Many intelligent global 
disease surveillance systems have be-
gun to emerge. To illustrate, we pres-
ent the following case study.

Case Study: BioPortal
In 2003, the University of Arizona 
Artificial Intelligence Lab along 
with collaborators in the New York 
State Department of Health and the  
California Department of Health 
Services initiated the BioPortal proj-
ect to develop an infectious-disease 
surveillance system. The project has 
been sponsored by the US National 
Science Foundation, the Department 
of Homeland Security, the Depart-
ment of Defense, the Arizona De-
partment of Health Services, and 
Kansas State University’s BioSecurity  
Center, under the guidance of a fed-
eral interagency working group 
called the Infectious Disease Infor-
matics Working Committee. Partners 
in the BioPortal project now include 
all the original collaborators as well 
as the US Geological Survey (USGS); 
University of California, Davis; Uni-
versity of Utah; the Arizona Depart-
ment of Health Services; Kansas State 
University; and the National Taiwan 
University. 

The BioPortal research proto-
type has provided distributed, cross- 
jurisdictional access to data sets  
concerning several major infectious 
diseases, including botulism, West 
Nile virus, foot-and-mouth disease, 
livestock syndromes, and chief com-
plaints (both in English and Chinese). 

It features advanced spatial-temporal 
data-analysis methods and visualiza-
tion capabilities. BioPortal supports 
syndromic surveillance of epidemio-
logical data and free-text chief com-
plaints. It also supports analysis and 
visualization of lab-generated gene 
sequence information. Figure 1 shows 
BioPortal system architecture.

BioPortal provides automatic syn-
drome classification capabilities based 
on free-text chief complaints (CCs).  
One method recently developed uses 
a concept ontology derived from the 
Unified Medical Language System  
(UMLS).3 For each chief CC, the 
method first standardizes the CC 
into one or more medical concepts 
in the UMLS. The system then maps 
these concepts into existing symp-
tom groups using a set of rules con-
structed from a symptom-grouping 
table. For symptoms not in the ta-
ble, the system uses a weighted se-
mantic similarity score algorithm, 
which measures the semantic sim-
ilarity between the target symp-
toms and existing symptom groups,  
to determine the best symptom group 
for the target symptom. The ontology-
enhanced CC classification method 
has also been extended to handle CCs 
in Chinese.

BioPortal supports hotspot analysis 
using various methods for detecting 
unusual spatial and temporal clusters 
of events. Hotspot analysis facilitates 
disease outbreak detection and pre-
dictive modeling. BioPortal supports 
various scan statistics using SaTScan, 
the nearest-neighbor hierarchical clus-
tering method, and two new machine-
learning methods (risk-adjusted sup-
port vector clustering, and prospective 
support vector clustering).4 BioPortal 
makes available a visualization envi-
ronment called the Spatial-Temporal 
Visualizer (STV), which allows us-
ers to interactively explore spatial  
and temporal patterns, based on an 

integrated toolset consisting of a geo-
graphic information systems (GIS) 
view, a timeline tool, and a periodic 
pattern tool.5

Trends and Controversies
Although syndromic surveillance has 
gained wide acceptance as a response 
to disease outbreaks and bioterrorism 
attacks, many research challenges re-
main; some reflect future trends, while 
others present controversies.

False Alarms
Syndromic surveillance systems of-
ten generate false alarms because it 
is difficult to distinguish natural data 
variations from real outbreaks. Hu-
man reviews and follow-up investiga-
tions are necessary for verification, 
which is costly in time and labor. A 
typical investigation could require 
a group of epidemiologists, public-
health officials, healthcare providers, 
and their support staff to go through 
a multistep procedure for alert re-
view and event evaluation. Signifi-
cant reduction of false alarms is re-
quired before any computer-based 
disease-surveillance system can be 
used in the field.

Effective Use of  
Surveillance Systems
There are circumstances in which au-
tomated disease surveillance might 
not be effective or necessary. For ex-
ample, the potential benefit of dis-
ease surveillance can’t be realized if 
hundreds or thousands of people are 
infected simultaneously. In another 
scenario, disease surveillance would 
be ineffective in a case that involved 
only a few people and thus went 
undetected.

Data Quality
Real-world disease data tend to be 
noisy and incomplete. Although re-
porting of most notifiable diseases 
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through various public-health agencies 
is required by law, hospitals, labora-
tories, and clinicians participate for 
the most part voluntarily. Patients 
making emergency room visits may 
not be representative of the popula-
tion in the neighboring community. 
This reinforces the need for careful 
evaluation of data sources and collec-
tion procedures.

System Interoperability
Existing systems differ significantly 
in scope and purpose—for example, 
in geographical coverage, types of 
data, and diseases monitored. For in-
stance, some systems might focus on 
biodefense, whereas other systems 
might target influenza. The absence 
of standard vocabularies and mes-
saging protocols leads to interoper-
ability problems among syndromic 
surveillance systems and the underly-
ing data sources. Health Level Seven 
(HL7) standards and XML-based 
messaging protocols represent a po-
tential solution for addressing these 
problems.

Algorithm Benchmarking  
and Comparison
Each syndromic surveillance system 
implements a unique set of outbreak 
detection algorithms. We urgently need 
a better understanding of the strengths 
and limitations of various detection 
techniques and their applicability. Data 
visualization techniques—especially  
interactive visual data exploration 
techniques—must be further developed 
to meet the specific analysis needs of 
syndromic surveillance. Outbreak de-
tection algorithms must be improved 
in terms of sensitivity, specificity, and 
timeliness. In particular, how to deal 
with incomplete data records, how to 
perform privacy-conscious data min-
ing, and how to leverage multiple data 
streams, are all interesting research 
questions.

Figure 1. BioPortal system architecture: (a) BioPortal information-sharing and 
data access infrastructure; (b) BioPortal’s enhanced system architecture with 
epidemiological data and gene sequence data surveillance. PHINMS: Public-Health 
Information Network Messaging System; HL7: Health Level 7, a medical data-
exchange standard; NYSDOH: New York State Department of Health; CADHS: 
California Department of Health Services; ClustalW: a general-purpose multiple 
sequence alignment program for DNA or proteins; NJ: the neighbor-joining method 
used within ClustalW.
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Assessment, Evaluation,  
and Deployment
Surveillance system evaluation and 
comparison are confounded by sev-
eral practical issues. Systematic, field-
based, objective comparative studies 
among systems are critically needed. 
Lessons learned from successful and 
failed implementations must be care-
fully developed to help with future 
implementations.

In this Issue
In this issue we include three papers 
on AI for global disease surveillance 
from distinguished experts in disease 
informatics, linguistic analysis, and 
visual analytics. Each essay presents 
a unique innovative research frame-
work, computational methods, and 
selected results and examples.

In “Broadening the Perspective 
of AI in Public-Health Surveillance: 
From Local Aberration Detection 
to Global Epidemic Monitoring and 
Control,” Buckeridge, Izadi, Verma, 
and Okhmatovskaia provide an over-
view of aberrancy detection and pres-
ent many exciting opportunities for AI 
research in epidemic monitoring and 
control on regional and global scales. 

In “Mining Biomedical Literature 
to Identify Viruses and Bacteria as 
Potential Bioterrorism Weapons,” Hu 
and Shen present selected computa-
tional analysis algorithms for auto-
mated identification of viruses and 
bacteria in biomedical literature. The 
approach may provide a viable option 
for mining large-scale biomedical or 
disease-related knowledge. 

In “Disease Surveillance Based on 
Spatial Contact Networks: A Case 
Study of the Beijing 2003 SARS Ep-
idemic,” Zeng, Cao, Wang, Chen, 
Zheng, and Wang present a case study 
analyzing spatial contact networks to 
detect the spatial risk of epidemics 
in large urban areas. Our study uses 
the survey data concerning spatial  

elements of the contact network from 
the Beijing 2003 SARS epidemic. Re-
search results show that spatial con-
tact networks could be a powerful 
tool to help detect spatial transmis-
sion risk and understand the inher-
ent mechanisms of infectious disease 
transmission.

A lthough global surveillance sys-
tems have been developed and de-
ployed in many cities, states, and 
countries, there is a critical need to 
create a cross-jurisdictional, cross-
regional data-sharing infrastructure 
to maximize the potential benefit and 
practical impact of global disease sur-
veillance. In a broader context, syn-
dromic surveillance should be turned 
into a truly global effort for pan-
demic diseases such as SARS, influ-
enza, foot-and-mouth disease, and so 
on. We must address issues concern-
ing global data sharing and the de-
velopment of models that work inter-
nationally. In addition to intelligent 
systems and advanced analytics, in-
ternational politics, global commerce 
interests, and cultural and regional 
considerations are some of the issues 
that must be considered for effective 
global disease surveillance.
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Broadening the 
Perspective of AI in 
Public-Health Surveillance: 
From Local Detection 
to Global Epidemic 
Monitoring and Control

David L. Buckeridge, Masoumeh 
Izadi, Aman Verma, and Anya 
Okhmatovskaia, McGill University

As recently as the 20th century, public-
health experts in industrialized coun-
tries were confident that infectious 
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diseases posed little threat to human 
health. Today, however, infectious 
diseases remain the leading cause 
of death among children and young 
adults, resulting in more than 13 mil-
lion deaths each year. Moreover, with 
335 new infectious diseases identified 
in the last 60 years and many known 
organisms, such as influenza, evolv-
ing continuously, the world lives un-
der the constant threat of the next 
pandemic.

Public-health surveillance is critical 
for detecting and controlling epidem-
ics, and the contribution of AI to sur-
veillance has been considerable over 
the last decade. In those 10 years, 
nearly 90 percent of US state public-
health departments adopted some 
form of automated, real-time sur-
veillance.1 The introduction of these 
novel, automated systems has pre-
sented exciting new opportunities for 
AI researchers. The systems, usually 
operated at a city or regional level, ac-
quire large volumes of heterogeneous 
data in real time from sites such as 
emergency departments and pharma-
cies and group the records into syn-
dromes of public-health interest.2

From an applied public-health per-
spective, the surveillance process oc-
curs in two phases: before and after 
an epidemic is recognized to be occur-
ring. In this essay, we begin by outlin-
ing some contributions of AI to the 
first phase of surveillance, when the 
predominant objective is epidemic de-
tection. We then propose two areas of 
focus for AI in the future: supporting 
decision making in the phase after an 
epidemic is detected, and scaling ar-
chitectures and methods used in local 
and regional systems to conduct auto-
mated surveillance on a global scale.

Contributions of AI  
to Epidemic Detection
Research on epidemic detection has tar-
geted mainly two problems: identifying  

individual cases of a disease or  
syndrome, and identifying unusual 
clusters of cases. In terms of case de-
tection, researchers have used on-
tology to annotate and integrate  
disparate data and have developed 
statistical, probabilistic, and rule-
based algorithms to process medi-
cal text and classify records. At the 
population level, researchers have de-
veloped and validated a wide range 
of statistical and machine-learning 
methods to detect unusual patterns. 
While recent advances in automated 
epidemic detection have been pro-
found, automated surveillance sys-
tems are still perceived as having high 
false-alarm rates, and there is no con-
sensus on which detection algorithms 
to use in practice.

Researchers have, not surprisingly, 
found it difficult to develop detection 
algorithms that identify weak signals 
with high accuracy. Perhaps due to 
the paucity of example epidemic sig-
nals, the predominant approach to 
detection has been to build a model 
of “normal” data and then monitor 
for changes from this baseline. Al-
though conceptually straightforward 
and generically applicable to surveil-
lance for any sort of epidemic, this 
approach encounters problems as the  
dimensionality of the data increases. 
As the number of dimensions in-
creases, so does the likelihood of de-
tecting statistically significant changes 
from baseline that have no known ep-
idemiological significance. Devising 
approaches to address this problem, 
possibly by combining epidemiologi-
cal knowledge with statistical pattern 
detection methods, is an important 
area for future AI research.

Despite the many epidemic detec-
tion algorithms that researchers have 
proposed and evaluated, it is still not 
clear to public-health practitioners 
which algorithms to use within their 
surveillance system. In response to this 

need, some research groups have be-
gun to systematically analyze the per-
formance of a wide range of detection 
algorithms and provide evidence to 
guide, and possibly even automate, the 
selection of epidemic detection meth-
ods. In the BioSTORM project, for 
example, researchers are modeling the 
detection process using a task-analytic 
approach (Figure 2), systematically 
evaluating the performance of detec-
tion algorithms in terms of this model, 
and then using machine learning to 
identify important determinants of ep-
idemic detection.3

Although recent advances in using 
AI methods to automate detection of 
individual cases and epidemics have 
been impressive in many respects, 
there remains a need for further re-
search. In particular, there is a po-
tential role for AI to make epidemic 
detection more “intelligent” by high-
lighting epidemiologically significant 
aberrations and by guiding the selec-
tion of algorithms to suit a particular 
surveillance situation.

The Limits of Automating 
Epidemic Detection
Although the methodological ad-
vances in epidemic detection over the 
last decade have been profound, the 
impact of these advances on public- 
health practice has been limited. 
The reasons for this limited impact 
relate to the role of epidemic detec-
tion within the broader context of 
disease control and the fit of these 
novel systems within public-health 
workflows.

To place these issues in perspec-
tive, it is helpful to review briefly the 
evolution of AI in clinical medicine. 
Initial AI research in clinical decision 
support focused on diagnosis, and al-
though very accurate algorithms and 
systems were developed, diagnos-
tic decision support systems are still 
not used routinely in clinical practice. 
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Two critical reasons for this failed 
adoption are that these systems nei-
ther addressed a compelling need nor 
were integrated with clinician work-
flow.4 In particular, although diag-
nosis is an interesting problem, clini-
cal practice directs far more time and 
effort toward disease management.  
Accordingly, work in clinical deci-
sion support has shifted to develop  

systems that guide therapy and man-
agement decisions.

Analogously, although epidemic 
detection is an interesting and easily 
studied problem, most public health 
departments spend little time at-
tempting to detect epidemics through 
surveillance; instead they have come 
to rely on these automated systems to 
monitor the progression of identified 

outbreaks, such as the seasonal influ-
enza epidemic.1 Recent experiences 
with using these systems for H1N1 
pandemic influenza surveillance in-
dicate that automated systems can 
be adapted flexibly to monitor novel 
diseases and can provide critical  
insights in real time into the epidemi-
ology of previously unknown infec-
tious agents. Understanding how these  

Figure 2. General task structure of temporal detection algorithms. Temporal algorithms are represented as instances of a task-
decomposition method (“temporal aberrancy detection” in the figure) that performs the task of detecting aberrations in the 
surveillance data by decomposing this task into four subtasks (ellipses). Each subtask can be accomplished by different methods 
(rectangles), some of which perform the task directly (primitive methods, shown as orange rectangles), and some further 
decompose the task into subtasks (task-decomposition methods, shown as yellow rectangles). For instance, the “compute 
expectation” task, which constitutes one of the steps (subtasks) of aberrancy detection, can in turn be decomposed into four 
subtasks, if the “empirical forecasting” method is used. Alternatively, this task can be accomplished directly by a primitive 
method—“theory-based forecasting.” Similar alternatives exist for the “evaluate test value” task. See our earlier publication  
for a full description.3
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systems are best integrated into pub-
lic-health workflows, however, re-
mains an open research challenge.

Using AI to Guide Epidemic 
Monitoring and Response
Although aberration detection is im-
portant, the ability to monitor and 
control an epidemic is as pressing and 
in many respects a more important 
problem for public health. Epidemic 
monitoring and control also pose 
many challenges for AI researchers, 
including

describing epidemiologically rele-•	
vant patterns of disease,
forecasting and visualizing an epi-•	
demic’s likely evolution, and
guiding the selection and evalua-•	
tion of epidemic control measures.

The ability to describe and, ide-
ally, explain epidemiologically rel-
evant disease patterns is critical for 
developing an epidemiological profile 
of the disease, and in particular for 
identifying subpopulations with an 
elevated risk of infection or compli-
cations. Factors to be considered in-
clude age, symptom profile, severity of  

illness, and the spatial extent of cases. 
Given the high-dimensional nature of 
the data, approaches to pattern de-
tection and classification that do not 
incorporate epidemiological knowl-
edge are unlikely to succeed. Hybrid 
knowledge-based and statistical ap-
proaches, however, are more promis-
ing. For example, it may be possible 
to define certain types of patterns 
that have epidemiological relevance 
and then implement statistical meth-
ods to identify these types of pattern. 
This type of approach has been ap-
plied with some success in other med-
ical settings such as intensive-care 
unit monitoring.

In order to assess and organize the 
resources needed to control an epi-
demic, public-health personnel must 
be able to forecast and visualize the 
likely evolution of an epidemic. With 
infectious diseases, this type of fore-
casting requires knowledge of how the 
organism is likely to spread through a 
population, including topics such as 
transmissibility and the contact net-
work. The last decade has seen an  
increase in research on epidemic 
modeling, resulting in advances in the 
use of network theory, agent-based  

modeling, and other strategies to 
model epidemics in human popula-
tions. However, researchers typically 
use this type of modeling to draw ge-
neric inferences about epidemic con-
trol, as opposed to guiding specific 
day-to-day decisions about manag-
ing an ongoing epidemic. The direct 
linkage of surveillance systems with 
epidemic simulation models to allow 
real-time forecasting is a particularly 
promising area for future AI research.

Guiding the selection and evalua-
tion and epidemic control measures is 
necessary to ensure that available data 
and knowledge are brought to bear in 
making evidence-based decisions dur-
ing a potentially politically charged 
and chaotic situation. The problem 
here is, given likely scenarios for the 
natural evolution of an epidemic, to 
identify the optimal public-health 
control measures to limit morbidity 
and mortality among the population. 
The capacity to simulate the progres-
sion of an epidemic remains essen-
tial, but now this forecasting must be  
combined with knowledge about po-
tential interventions and their effec-
tiveness. Some researchers have begun 
to explore this issue by using methods 
from reinforcement learning to im-
prove decision making following an 
alert.5 Although initial results of this 
research suggest that optimizing deci-
sion making during this phase of sur-
veillance has the potential to improve 
outcomes (Figure 3), there remains 
considerable room for innovative re-
search to address this problem.

Moving Automated 
Surveillance to a  
Global Scale
So far in this essay, we have consid-
ered the historical and potential con-
tributions of AI towards automating 
local and regional public-health sur-
veillance systems. Infectious diseases, 
however, are increasingly global in 

Figure 3. Average cost of an inhalational anthrax outbreak under different policies 
for responding to alarms from an aberrancy detection algorithm. The ideal policy 
is one where true alerts are always acted upon immediately and false alerts are 
always ignored. The worst policy is one where true alerts are always ignored. The 
ad hoc policies all follow the same series of steps after an alert, reflecting current 
public-health practice. The POMDP policies respond to each alert in a manner that 
minimizes costs as estimated using a Partially Observed Markov Decision Process. 
The letters l, m, and h refer to the sensitivity of the aberrancy detection algorithm 
as low, medium, and high. See our earlier publication for a full description.5
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terms of their emergence and the 
rate at which they spread through a 
highly connected world. The need to 
scale the methods behind local and 
regional automated surveillance to al-
low systems to operate at the global 
scale is an exciting challenge for AI 
researchers.

There currently exists no auto-
mated surveillance of individual cases 
of disease at the global scale. In the 
absence of such systems, a handful of 
automated systems were developed 
over the last decade to perform global 
surveillance of Internet media. These 
systems scan a wide range of infor-
mation available over the Internet and 
attempt to integrate findings from 
disparate sources using rule-based 
and statistical text-processing meth-
ods. Some of these systems have been 
successful in identifying epidemics 
rapidly, especially in situations when 
official reporting has been slow. Al-
though they play an important role 
in global surveillance, these Internet 
media surveillance systems lack the 
clinical detail found in surveillance of 
cases or syndromes of diseases.

Privacy and legal constraints make 
global surveillance of individual data 
practically impossible to achieve, but 
distributed surveillance presents an 
alternative approach that is quickly 
coming to the fore. In this approach, 
existing automated surveillance sys-
tems operating at the local or regional 
level forward an aggregated version of 
their data to another system that inte-
grates then analyzes these data to give 
a wider geographical perspective on 
the epidemic. For example, the Dis-
tribute project of the International So-
ciety for Disease Surveillance (http://
distribute.syndromic.org) operates in 
this manner to integrate surveillance 
data about influenza-like illness and 
gastrointestinal disease from systems 
in the United States and Canada. Ini-
tial results from this project suggest 

that the distributed approach is in-
formative, flexible, and potentially 
expandable to a continental or even 
global scale. This scale of automated 
surveillance presents a wide range of 
exciting AI research opportunities in 
terms of aberrancy detection and ep-
idemic monitoring and control using 
global data.

Infectious diseases continue to pose 
a threat to global health, and public- 
health surveillance has advanced 
considerably in the last decade in re-
sponse to this threat. AI research-
ers have played an important role in 
these advances, mainly through the 
development of epidemic detection 
methods. Epidemic detection remains 
an important focus for research, but 
more broadly, there are many excit-
ing opportunities for AI research on 
epidemic monitoring and control at 
regional and global scales.
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Mining Biomedical 
Literature to Identify 
Viruses and Bacteria as 
Potential Bioterrorism 
Weapons

Xiaohua Hu, Henan University and 
Drexel University
Xiajiong Shen, Henan University

Biomedical-literature mining is a pro-
cedure to identify important knowl-
edge and information from large bio-
medical document set. It has been 
applied to a wide range of applica-
tions, such as recognizing biomedi-
cal terms, extracting protein interac-
tions, discovering protein functional 
regions, and generating hypothe-
ses.1 The problem of mining implicit 
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knowledge or information from bio-
medical literature was exemplified 
by D.R. Swanson’s pioneering work 
on Raynaud’s disease and fish oil in 
1986.2 He found from biomedical 
literature that Raynaud’s disease is 
a peripheral circulatory disorder ag-
gravated by high platelet aggregation, 
high blood viscosity, and vasocon-
striction. In a separate set of literature 
on fish oils, he discovered that the 
ingestion of fish oil can reduce these 
phenomena. But no single article from 
either set in the biomedical literature 
in 1986 mentioned Raynaud’s disease 
and fish oil together. Putting these 
two separate literature sets together, 
Swanson hypothesized that fish oil 
might be beneficial to people suffer-
ing from Raynaud’s disease. Later, 
Swanson extended his methods to 
search medical literature for potential 
viruses.3

Background: Viruses  
and Bacteria
Some viruses and bacteria have been 
identified as bioterrorism weapons. 
However, many other viruses and 
bacteria have the potential to become 
bioterrorism weapons. Because bio-
logical agents such as viruses evolve 
through mutations and biological or 
chemical changes, and because some 
biological substances have the po-
tential to turn into deadly viruses 
through chemical, genetic, and bio-
logical reactions, there should be an 
automatic way to keep track of exist-
ing suspicious viruses and to discover 
new viruses that have the potential 
to become weapons. It would be very 
useful to identify those biological 
substances and take precautionary 
actions or measurements. 

Geissler identified and summa-
rized 13 criteria (listed in Table 1) for  

identifying biological warfare agents 
as viruses.4 He then compiled 21 vi-
ruses that meet some of these criteria. 
Following are the 21 viruses in MeSH 
terms:

Hemorrhagic fever virus, Crimean-•	
Congo
Lymphocytic choriomeningitis virus•	
Encephalitis virus, Venezuelan equine•	
Encephalitis virus, Western Equine•	
Encephalitis virus, Eastern equine•	
Encephalitis virus, Japanese•	
Encephalitis viruses, tick-borne•	
Encephalitis virus, St. Louis•	
Arenaviruses, New World•	
Marburg-like viruses•	
Rift Valley fever virus•	
Yellow fever virus•	
Chikungunya virus•	
Dengue virus•	
Ebola-like viruses•	
Hantaan virus•	
Hepatitis-A virus•	
Orthomyxoviridae•	
Junin virus•	
Lassa virus•	
Variola virus•	

There are 13 known bacteria that 
can cause deadly disease. For example, 
anthrax is an acute infectious disease 
caused by the spore-forming bacte-
rium Bacillus anthracis. Anthrax most 
commonly occurs in wild and domestic 
lower vertebrates (cattle, sheep, goats, 
camels, antelopes, and other herbi-
vores), but it can also occur in humans 
when they are exposed to infected ani-
mals or tissue from infected animals, 
or when anthrax spores are used as 
a bioterrorist weapon. Coxiella bur-
netii is a highly infectious agent that 
is rather resistant to heat and drying. 
It can become airborne and inhaled by 
humans. A single C. burnetii organism 
can cause disease in a susceptible per-
son. This agent could be developed for 
use in biological warfare and is consid-
ered a potential terrorist threat.

Table 1. Geissler’s 13 criteria for viruses.4

No. Criterion

  1 The agent should consistently produce a given effect: death or disease.

  2 The concentration of the agent needed to cause death or disease—the 
infective dose—should be low.

  3 The agent should be highly contagious.

  4 The agent should have a short and predictable incubation time from expo-
sure to onset of the disease symptoms.

  5 The target population should have little or no natural or acquired immunity 
or resistance to the agent.

  6 Prophylaxis against the agent should not be available to the target population.

  7 The agent should be difficult to identify in the target population, and little 
or no treatment for the disease caused by the agent should be available.

  8 The aggressor should have means to protect his own forces and popula-
tion against the agent clandestinely.

  9 The agent should be amenable to economical mass production.

10 The agent should be reasonably robust and stable under production and 
storage conditions, in munitions, and during transportation. Storage meth-
ods should be available that prevent gross decline of the agent’s activity.

11 The agent should be capable of efficient dissemination. If it cannot be 
delivered via an aerosol, living vectors (such as fleas, mosquitoes, and 
ticks) should be available for dispersal in some form of infected substrate.

12 The agent should be stable during dissemination. If it is to be delivered 
via an aerosol, it must survive and remain stable in air until it reaches the 
target population.

13 After delivery, the agent should have low persistence, surviving only for a 
short time, thereby allowing a prompt occupation of the attacked area by 
the aggressor’s troops.
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Swanson developed a text-mining 
method to search biomedical lit-
erature for potential viruses.3 His 
method’s greatest limitation is that 
it uses only three properties or cri-
teria of a virus as search keywords, 
and it ignores semantic information 
in the searching procedure. In this 
essay, we present a novel biomedical- 
literature-mining algorithm based on 
the Swanson philosophy but extend-
ing it significantly. Our objective is to 
extend the existing known virus list 
compiled by the CDC and the bac-
teria recognized by domain experts 
as bioterrorism weapons to include 
other viruses and bacteria that might 
have similar characteristics. We thus 
hypothesize that viruses and bacteria 
that have been researched with re-
spect to the characteristics possessed 
by existing viruses are leading can-
didates for extending the virus and 
bacterium list.

Design Method
MedMeSH Summarizer summarizes 
a group of genes by filtering the bio-
medical literature and assigning rel-
evant keywords describing the func-
tionality of a group of genes.1 Each 
gene cluster contains N genes, and 
each gene has a set of terms associ-
ated with it. MedMeSH Summarizer 
thus builds a co-occurrence matrix, 
with the number of citations associ-
ated with the gene and containing 
the MeSH (Medical Subject Head-
ings) term as the cell values. On the 
basis of this matrix and statistical in-
formation, our algorithm calculated 
overall relevance ranking for all the 
terms describing the topic of a cer-
tain cluster of genes. The PubMed 
database defines 630 bacteria. We 
found it quite reasonable to extract 
topical terms for the 13 known bac-
teria in Table 2; we then used these 
terms to look for other suspicious 
bacteria.

Definition of Terms
The normalized term bacterium ma-
trix is 
f F Fij ij i

M
ij= / ( ) ≤ ≤=∑/ ( )1 0 1

α
α

 
(1)

where Fij is the number of PubMed 
documents retrieved by bacterium j 
that contain term i.

Relevance ranking uses the follow-
ing three criteria:

Cluster topics (major): Terms oc-1. 
cur in most bacteria with high fre-
quency. (Criterion R1: Rank the 
MeSH terms by decreasing order 
of the means mj.)
Cluster topics (minor): Terms oc-2. 
cur in most bacteria with low fre-
quency. Compute

σ i j
N

ij if N= −( ) //=∑ 1
2( ) / µ .

(Criterion R2: Rank the MeSH 
terms by decreasing order of the 
ratios mj/si.)
Particular topics: Terms occur in a 3. 
few bacteria with high frequency. 
(Criterion R3: Rank the MeSH 
terms by decreasing order of the 
ratios si

2/mj.)

Each MeSH term in Ω is ranked on 
the basis of criteria R1–R3. We then 

give the terms an overall relevance 
rank R, where 

R = wR1 + [(1 − w)/2]R2 
    + [(1 − w)/2]R3  (2)

The weight parameter in Equation 2 
is set so that the major topics have 
weight w, being the most important 
set of terms in providing a summary 
of the cluster. The remaining weight 
(1 − w) is divided equally between the 
minor topics and the particular top-
ics. In our system, we set w to 0.5 be-
cause we look for more topical terms 
of the entire bacteria cluster.

Algorithm Procedure
The algorithm we used to look for 
suspicious bacteria and viruses con-
sists of the following steps:5

Submit query “bacteria name [ma-1. 
jor]” to PubMed and download 
MeSH terms after applying a stop-
word list for each biological agent. 
We downloaded documents for 
the 13 existing bacteria. Our stop-
word list is composed of MeSH 
terms extracted from PubMed 
documents (1994–2004) by their 
overall usage. (For example, one 
very frequently used MeSH term 
without biomedical meaning is 
“government supported.”)

Table 2. Bacteria used in biological warfare.

Bacteria name Disease caused

Bacillus anthracis Anthrax

Clostridium botulinum Botulism

Brucella melitensis  
Brucella abortus 
Brucella suis

Brucellosis

Vibrio cholerae Cholera

Francisella tularensis Tularemia

Burkholderia mallei  
Burkholderia pseudomallei

Glanders

Coxiella burnetti Q fever

Salmonella Salmonellosis, typhoid fever

Yersinia pestis Plague

Shigella dysenteriae Shigellosis
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Build a normalized matrix  2. 
(Equation 1) of terms by bacte-
rium (for the already identified 
13 bacteria).
Rank all the terms according to 3. 
Equation 2 and pick top k terms. 
Download documents for the re-4. 
maining 617 bacteria, build a ma-
trix of terms by bacteria (Equa-
tion 1).
Let 5. Ri be the rank value of bac-
terium i; we use the following 
formula:

R f RB
i
M

ij i= ×=∑ 1


Results
We applied our method to two data 
sets: viruses and bacteria. Because of 
this essay’s space limitations, we list 
only the result for bacteria. Table 3 
displays the top-ranked bacteria by 
criteria.

Table 3 demonstrates that many 
potential bacterial threats could af-
fect public health on a wide scale if 
disseminated effectively. We intend 
our findings to be used as a guide to 
the virus literature to support fur-
ther studies that could lead to ap-
propriate defense and public-health 
measures. 

In 1999, the US Department of De-
fense was involved in building a di-
rectory of known emerging infectious 
diseases and laboratory tests world-
wide. It identified approximately 40 
high-threat agents for bioterrorism, 
including many of the hemorrhagic 
viruses.6 However, since that time, 
we have seen the emergence of SARS, 
avian flu, the H1N1 and H1N5  
viruses, and many other threats to 
the public health. This situation is 

worrisome to public-health officials, 
who are concerned that the public-
health system might not yet be pre-
pared fully for such a crisis as the 
release of a viral agent in the US pop-
ulation. Certainly, steps have been 
made in laboratory and public-health 
preparedness to identify such threats, 
but potential gaps remain.

Viruses vary in their biological ca-
pability to survive, replicate, and in-
fect. Therefore, lists such as those we 
have produced at least remind us that 
other viral agents besides the com-
monly known groups can potentially 
cause disease or terror in popula-
tions. We must be prepared; without 
continued work such as this to iden-
tify additional threats, preparedness 
efforts may fall short.
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Disease Surveillance 
Based On Spatial Contact 
Networks: A Case Study 
of Beijing 2003 SARS 
Epidemic

Daniel Zeng and Hsinchun Chen, 
University of Arizona
Zhidong Cao, Fei-Yue Wang, and 
Xiaolong Zheng, Chinese Academy  
of Sciences
Quanyi Wang, Beijing Center for 
Disease Control and Prevention

The explosive growth of urban popu-
lation and accelerated urbanization in 
many parts of the world have led to a 
variety of public-health challenges, as 
the high population density and the 
high intensity and frequency of con-
tacts and interactions among the popu-
lation can be a significant epidemic risk 
factor.1 In particular, socioeconomic 
status and social-network structures  
are major determinants of the intensity 
and frequency of direct contacts in the 

same way that geographic locations de-
termine the spatial diffusion patterns 
of infectious diseases. Various prop-
erties of people’s spatial contact net-
works must be studied to facilitate a 
better understanding of disease trans-
mission mechanisms and ultimately 
help officials make more informed 
public-health response decisions.

We can construct two types of con-
tact networks—social-contact net-
works and spatial-contact networks— 
on the basis of social and geographical 
relationships among infected and sus-
ceptible people. Lately, epidemiologi-
cal research has focused on the social- 
contact network-based survey method-
ology.1,2 This approach allows research-
ers to study several interesting network 
properties concerning degree distribu-
tions, including the well-known small-
world and scale-free properties. In the 
recent literature, researchers have suc-
cessfully applied social-contact net-
work analysis to analyze AIDS, tuber-
culosis, and SARS data; the approach 
is proven to be a useful tool to help 
predict and respond to infectious- 
disease outbreaks, complementing ex-
isting epidemiological toolsets.

However, spatial diffusion patterns, 
which are essential for designing re-
sponse and prevention strategies during 
outbreaks, have been largely ignored in 
this line of research. “Everything is re-
lated to everything else, but near things 
are more related than distant things.”3 
Geographical locations provide con-
texts for social, economic, and cultural 
aggregation. Because people are con-
nected via social and geographical con-
texts, geographical contacts are criti-
cal for understanding the outbreaks, 
finding potential connections among 
patients, and evaluating the role that 
those geographical locations play in 
disease outbreaks. We argue that a bet-
ter understanding of the characteris-
tics of the spatial-contact network can 
provide critical insights into disease 

dynamics in space, and can serve as a 
disease surveillance method from the 
point of view of spatial risk detection. 
The origins of this idea are as early as 
1854, when John Snow mapped all pa-
tients and analyzed the spatial relation-
ships in patient-contact networks in ur-
ban regions to effectively contain the 
spread of cholera in London.4

Although a substantial amount  
of work has gone into developing 
mathematical models of social-contact  
networks, work on incorporating im-
portant geographical contexts into 
contact networks is just starting, call-
ing for research in both empirical and 
computational analysis, and theoreti-
cal modeling building. A major rea-
son for lack of progress in this area 
seems to be twofold. First, research 
in this area must be highly interdisci-
plinary, cutting across computational 
sciences, epidemiology and public 
health, and geographical information 
science, an area of study that started 
not long ago. Second, the lack of de-
tailed data sets with spatiotemporal-
network data elements capturing both 
social and geographical contexts has 
also slowed the research effort in this 
area. These barriers are disappearing 
due to a number of intellectual and 
practical reasons. We believe that the 
study of spatial-contact networks in-
tegrating both social and geographi-
cal contexts will become a hotspot 
for infectious-disease informatics re-
search with both academic and prac-
tical significance and relevance.

In this essay, we present a case study 
analyzing spatial-contact networks to 
detect the spatial risk of epidemics 
in large urban areas. Our study uses 
the survey data concerning spatial el-
ements of the contact network from 
the Beijing 2003 SARS epidemic. For 
model validation purposes, we com-
pare the spatial risk detected through 
spatial-contact networks with that 
detected through widely used local 
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spatial statistics, LISA (local indica-
tors of spatial association).

Case Study: Beijing 2003 
SARS Epidemic
We extracted the data used in our 
study from a survey of 2,444 SARS 
patients in Beijing, conducted by 
the Beijing Centers for Disease Con-
trol and Prevention and covering the  

period from 1 March 2003 to 7 June 
2003. Patients or their families were 
asked to provide information about 
gender, age, home address, work ad-
dress, onset of symptoms, and a de-
scription of who had contact with 
whom. To analyze the spatial pat-
terns and understand the complexity 
of spatial transmission risks, we have 
adopted home addresses as the spatial 

locations for cases, because homes 
have been widely recognized as one 
of the highest-risk locations for SARS 
transmission. The map in Figure 4a 
shows the districts of Beijing; Fig-
ure 4b maps the spatial locations of 
2,321 SARS cases studied. (We aban-
doned the remaining 123 SARS cases 
because of incomplete, wrong, or un-
available spatial information.)

From our data set, 624 confirmed 
SARS patients have records of de-
tailed patient contact relationships. 
Their contact relationships form 482 
infectious links; each link is a directed 
arc pointing from patient A to patient 
B, if A transmitted the SARS virus to 
B. We focus on a computational anal-
ysis for spatial-risk detection of in-
fectious-disease transmission based 
on 408 available links whose corre-
sponding nodes are in Beijing. (Our 
study omits links concerning pa-
tients who weren’t local residents and 
weren’t infected in Beijing but were 
treated in Beijing hospitals.) Although 
the study sample size is small, this 
data set is representative of the popu-
lation and is the best one can do given 
the data collection challenges during 
a major public-health crisis. Figure 5 
shows the spatial-contact network of 
408 links.

Figure 6 shows the patterns of the 
SARS spatial-contact network with re-
spect to distance and direction. The re-
sults reveal that SARS transmission is 
anisotropic in Beijing. The city center  
has the highest risk of SARS epidemic, 
and the risk in the east is significantly 
higher than that in other directions. 
Transmission distances of links appear 
to follow approximately log-normal dis-
tribution, with the average transmis-
sion distance between different districts 
being around 18 km and the standard 
deviation 23.4 km. The coefficient of 
variation (23.4/18.1 = 1.3) is fairly 
large, indicating that transmission dis-
tance is scattered in space and that it 

Figure 4. Spatial distribution of 2,321 SARS cases in Beijing in 2003. (a) The city of 
Beijing covers 14 districts and two counties, of which eight districts (Dongcheng, 
Xicheng, Xuanwu, Chongwen, Haidian, Chaoyang, Shijing, and Fengtai) are core 
urban regions. (b) We mapped all 2,231 SARS cases by the patient’s home address.
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is hard to control the spatial diffusion 
of SARS transmission. We also note 
an abnormally high-risk region in the 
east part of Beijing. This could be a re-
sult of more frequent interaction be-
tween the people working in the city 
center and those living in the eastern 
areas of Beijing.

To further analyze transmission 
risks between different districts, we 
aggregated all the nodes of links to the 
geometrical centers of Beijing’s dis-
tricts and constructed a new spatial-
contact network among all districts, 
which we show in Figure 7. The trans-
mission risks among four districts 
(city center, Chaoyang, Haidian, and 
Tongzhou) are significantly higher 
than those among other districts. 
During the SARS epidemic there 
were four strong transmission chan-
nels: city center–Haidian, city center– 
Chaoyang, city center–Tongzhou, and 
Chaoyang–Tongzhou. Intuitively, we 
expect the high risk of SARS trans-
mission in the city center, Chaoyang, 
and Haidian because of high-density 
population in these areas. Surpris-
ingly, the Tongzhou district, located  
in the far east of Beijing with a  
low population density and few hos-
pitals receiving SARS patients, also 
appears to possess high risk. A par-
tial explanation could be economic-
social: the cost of living in the Central 
Business District (CBD) located in the 
Chaoyang district is high, so many 
people working in the CBD choose 
to live in the Tongzhou district, a far 
more affordable area.

To evaluate the effectiveness and 
usefulness of an approach to disease 
surveillance based on spatial-contact 
networks, we have conducted a com-
parative study using the spatial statis-
tical methods as a benchmark. Spa-
tial statistics can be applied to detect 
spatial risks of disease transmission 
by identifying spatial dependencies 
among observations. In our study, we 

used the widely applied LISA statistic, 
an indicator of spatial association, to 
analyze the morbidity rate of Beijing 
SARS cases using local clusters (re-
gions where adjacent areas have simi-
lar values) or spatial outliers (areas 
distinct from their neighbors),4 shown 
in Figure 8b. A LISA map uses four  
categories of spatial patterns. The 
high–high and low–low locations 
(positive local spatial autocorrelation) 
are typically called spatial clusters, 
while the high–low and low–high lo-
cations (negative local spatial autocor-
relation) are termed spatial outliers. A 
cluster is computed as such when the 
value at a location (either high or low) 
is more similar to its neighbors than 
would be the case under spatial ran-
domness. The high–high locations re-
fers to hotspot areas, where the risk 

of SARS spreading is higher than av-
erage; the low–low locations refers to 
coolspot areas, where the risk of SARS 
spread is lower than average.

We found that the spatial-risk detec-
tion results of spatial-contact networks 
were largely consistent with results 
based on local spatial association.

Discussion
We report in this essay a computa-
tional exploration of spatial-contact 
networks in the context of infectious-
disease surveillance. Research results 
show that spatial-contact networks 
could be a powerful tool to help de-
tect spatial transmission risk and un-
derstand the inherent mechanisms of 
infectious-disease transmission.

When an epidemic outbreak oc-
curs, especially for new and emerging 

Figure 5. Spatial-contact networks of SARS transmission in Beijing, 2003. The map 
shows the spatial relationship of the patient contact network with 624 nodes and 
408 links, where nodes are SARS-infected persons within the networks, and links 
indicate infection relationships.
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diseases, action must be taken on the 
basis of sparse knowledge about the 
pathogen and disease transmission.  
Public-health response mechanisms such 
as quarantine are often implemented 
without a proper understanding of their 
impact. Geographical locations, as 
well as social relationships, are crucial 
for understanding spatial-temporal  
pattern of infectious diseases and 
could lead to a better understanding of 
the complex dynamic of transmission 

and become part of informatics dis-
ease analytics for actionable use. Our 
case study presents preliminary em-
pirical evidence about the importance 
of spatial-contact networks.

Traditional social-contact network 
analysis models transmission of dis-
eases primarily based on direct or 
indirect person-to-person contacts. 
Traditional epidemiological work has 

been focusing mainly on time-series 
analysis and dynamic systems, al-
though researchers are increasingly 
incorporating spatial elements into 
epidemiological analyses through 
spatial statistics modeling techniques 
and spatial surveillance algorithms.

Any infectious-disease transmis-
sion that is based on personal contact  
is bound to have strong spatial fea-
tures as people aggregate and move 
around. As such, analysis based on  

Figure 6. Patterns of the SARS spatial-contact network with 408 links. (a) This graph shows the directions and distances of  
408 links, with the start node of each link placed at the origin of the coordinate system. (b) This rose map plots the same data. 
(c) This graph shows the probability density of all distances of the links with starting and ending notes in different districts,  
and a log-normal function fitting the density.
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social-spatial contact networks has 
wide applicability. Spatial-contact net-
works can reveal potential transmis-
sion risks among patients in space, 
complementing a pure spatial epidemi-
ological analysis that ignores patient 
interaction information. At the same 
time, spatial-contact networks com-
plement social-contact networks by 
enriching the context of patient con-
tacts with spatial information and en-
abling analysis of interactions between 
spatial and social factors.

From both domain science and 
methodological viewpoints, however, 
research on spatial-contact networks 
is just beginning, and many chal-
lenges remain. 

First, we need empirical studies 
to assess the usefulness of spatial- 
contact networks in practice. The 

case study we have presented here is 
just one such example.

Second, many options are possi-
ble to represent the key elements of 
data of interest: spatial, temporal, 
and contact networks. In our case 
study, we imposed contact informa-
tion on the spatial structure. Re-
searchers have also explored the op-
posite: adding spatial information 
on top of the social networks. The 
various ways of encoding and rep-
resenting temporal information lead 
to further complications with rep-
resentation selection. Insights and 
computational experience with these 
different representations, especially 
in a comparative context, are yet to 
be reported. Such comparisons could 
have interesting modeling and prac-
tical implications.

Third, principle-based models of 
disease transmission on spatial-contact 
networks are lacking. The standard 
epidemiological models such as SIR 
(susceptible, infectious, recovered) 
provide the references to guide em-
pirical models and can produce pre-
dictions and decision support. Such 
models are typically confined to the 
temporal domain. What are the coun-
terparts or extensions of these tem-
poral models in the spatial domain 
and in the spatial-network domain? 
We believe that these models—yet to 
be worked out—may lead to exciting 
new developments in public-health 
informatics and epidemiology.

Fourth, given empirical data and pos-
sibly spatial-temporal-network mod-
els of infectious-disease transmission, 
how can actionable public-health  

Figure 7. Patterns of the spatial-contact network among districts. Lines indicate links between different districts, and blocks 
refer to the links within the same district. Heavier lines and larger blocks indicate higher risk of SARS transmission.
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response advice be generated? We sus-
pect that analytical solutions could 
only help make such decisions in sim-
ple scenarios. A data-driven, real-
time response framework may nec-
essarily need AI-enabled human and 
group behavior simulation and exper-
imental methods such as those based 
on agents.
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Figure 8. Morbidity and spatial clustering based the LISA statistic. (a) The first map shows the spatial distribution of Bayes-
adjusted morbidities according to population. (b) The second map gives the outlines of four types of spatial clustering. We 
adopted spatial adjacent matrix-based distance; the threshold is the expected distance of 408 available links, 18.1 km.

60 km15 300

N

Bayes-adjusted
morbidity

(1/100,000)
0.7–3
3–6 
6–9 
9–15 
15–30 
30–120 
Expressway
Circle Road 60 km15 300

N

(a) (b)

LISA  cluster

High-high

High-low

Low-high

Low-low

Randomness

Expressway

Circle Road

Huairou
Yanqing

Fangshan

Shunyi

Daxing

Changping

Mengtougou

Tongzhou

Haidian

Chaoyang

Fengtai

Shijing
City center

Miyun

Pinggu

Selected CS articles and columns 
are also available for free at 

http://ComputingNow.computer.org.

IS-24-06-TC.indd   18 10/20/09   6:57:39 PM


