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prohlem solving and decision making, One
wiy 1o reduce 1t is by secking the advice of
in cxpert. When wie use computers to reduce
uncertainty, the computer tsell can become
an texpert” inaspecific ficld through a va-
nety of methods, One such method is ma-
chine learning, which involves using o com-
algorithm  to  capture  hidden
know ledge from data, Machine leaming usu-
ally encompasses different types of solu-

puter

tions, such ns decision trees, production
rifes; und neural networks.! (See the side-
bar on Al approaches 1o uncertointy.)

Wi compared the prediction performances
of three human track experts with those of two
muchine learming wehniques: a decision-tree
building algorithm® (103}, and 1 neural net-
swork learning algorithm! (backpropagation),

Most of the applications on which ma-
chine learming has been tested are inengi-
neering or biomedical domains, These do-
mains are complex and interesting, bul the
it sets vaed fortesting were relatively clean
and structured. For our research, we investi-
gited o different problem-solving scenario
called garee playing, which is unstructured,
complex, and seldom-stadied.

We considered several real-life game-
playing scenarios and decided on greyhound
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(UR RESEARCH EXPLORED TWO QUESTIONS:
CAN MACHINE-LEARNING TECH NIQUES REDUCE
UNCERTAINTY IN GAME-PLAYING SCENARIOS?
CAN THESE METHODS OUTPERFORM HUMAN

ractng, acomplex domain that involves shout
S0 performance varables for eight compet-
mg dogs in o rece.

For every race, each dog’s post history is
complete and freely avarlabile to bettors; This
15 4 large amount of historical imformation
— some aceurate and relevant, some noisy
and irrelevant — that must be [lterad, se-
lected, and analyzed (o assist in making a
prediction. This large search space poses o
challenge for both human experts and ma-
chine-learning algorithms. The guestions
then became: Can machine-learmning tech-
nigues reduce the uncertainty in a complex
game-playing scenario? Can these methods
outperform huroan experts in predicionT Chur
research sought 1o answer these questions,
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EXPERTS IN PREDICTION?

Setting up the experiments

The Tucson Grevhound Park in Tucson,
Artzon, holds about 112 mees imoan average
week, The park makes detailed programs
available to its patrons (see Figure 1), Each
program contains about 15 raees, with mce
s varyving from A (the most competitive)
to DL A few special races with grades such as
M (mudden mce) are also included, but were
ignored in our experiments, Bach race pro-
grem includes information about eight dogs,
including each dog's fastest time, the dog’s
totnl races, and its number of first, second,
third, and fourth place Gmshes. Directly
below the dog's summary data, the program
lists its performance for the last seven of its
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Figire 1. Sample greyhound ru:ii'-li} progrom.

races, which includes the dog’s starting posi-
tion, its position during the first turn (called
the break position), its position in the second
and third turns, and its finishing position. In
addition, its race time and the grade of the

race are recorded. The park also publishes the |

previous day’s results. These contain infor-
mation about how each dog fared, along with
the payoff odds on the winning dogs.

The park also enlists the prediction ser-
vices of three dog racing experts, who are not
affiliated with the park. To our knowledge,
their predictions are based solely on their
own thinking, and the park does not com-
pensate them for publishing their advice in
the daily programs. These experts base their
predictions on the same information avail-
able to any bettor in the daily program.

In a typical race, the program contains
about 50 variables that might affect the out-
come of that race. Among these are the con-
dition of the track, the weather, the dog owner
and trainer, and the physical attributes of each
dog. Using a “multiple representation strat-
egy” that bridges the gap between structural
representation and performance representa-
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tion,3 most of these variables in the program

| can be considered structural variables, from

which a small set of performance-related vari-
ables must be identified (either algorithmi-
cally or by some domain experts).

The “domain model” and “abstraction

- space” (of the underlying domain) also pro-

duce better classification results and sub-
stantial speedup (that is, they provide guid-
ance for the rule formation program in arule
space that is too large to search exhaustively,
and in a domain where trivial associations far
outnumber important ones.*)

As is typical of complex problem-solving
scenarios, the first, most'important, and most
time-consuming task was to reduce the prob-
lem’s complexity by pruning the problem
space: deciding on a smaller set of relevant
performance attributes. The inability of the
machine learning algorithms to analyze the
initial noisy and fussy problem domain
prompted us to rely on human experts’
knowledge and heuristics. (This may prove to
be one of the weaknesses of some prevailing
machine-learning techniques, and is an area
that deserves more research attention.)
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As in horse racing prediction,® the selec-
tion of performance attributes in our research
was mainly based on the opinions of frequent
bettors, track experts, and the management
of the park. These experts succinctly identi-
fied performance variables that they thought
were the most crucial in predicting winners.
Their domain knowledge helped to reduce
the problem space significantly. In total, the
experts suggested 10 performance variables:

o fastest time: the fastest
for a 5/16 mile race;

& win percentage: the numt
divided by the total num!

e place percentage: the nu
places divided by the total

e show percentage: the n
places divided by the total

e break average: the dog’s
the first turn (averaged
most recent races);

e finish average: the avera
sition over the previous s

e time 7 average: the averay
of the seven most recent
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Expert systems. One method of problem
solving involves “expert” or knowledge-based
systems. An expert system has been defined
as “a computer program that represents and
reasons with knowledge of some specialist
subject with a view of solving problems or
giving advice.”! The idea is to make an expert-
like system by storing large amounts of
domain-specific knowledge with “condition-
action” pairs, coupled with an inference
engine that simulates human reasoning.

Some knowledge-based systeins may
exhibit “weak” problem-solving methods for
various application domains, adopting human
problem-solving strategies (such as means-end
analysis) or general information-processing
heuristics (such as the Occam’s Razor heuristic).

Because expert systems aim to solve real-
world problems of significant complexity and
uncertainty, most of them offer rule-based so-
lutions to real-world problems. Applications
of expert systems have ranged from the analy-
sis of chemical compounds, to the diagnosis
of diseases, to the configuration of computer
systems.

Despite their usefulness, expert systems are
performance systems? — they only perform
what they were programmed to do because
they lack learning ability. In addition, signifi-
cant effort is often required to obtain knowl-
edge from domain experts, and to maintain
and update the knowledge base.

Machine learning. In contrast to performance
systems, which acquire knowledge from
human experts, learning systems acquire
knowledge automatically from data. The most
frequently used techniques include symbolic,
inductive-learning algorithms such as ID3 and
multiple-layered, feed-forward neural
networks such as backpropagation networks.

Symbolic learning and ID3. In symbolic ma-
chine learning, knowledge is represented by
symbolic descriptions of the learned concepts.
Symbolic machine-learning techniques can be
classified based on underlying learning strate-
gies like rote learning, learning by being told,
learning by analogy, and so on.> Among these
techniques, learning from examples — a spe-
cial case of inductive learning — appears to be
the most promising technique for knowledge
discovery in real databases.

The ID3 decision-tree building algorithm

Input patterns

Figure A. A backpropagation network.

and produces a decision tree that incorporates
these attributes and correctly classifies all the
given objects. It uses an information-theoretic
approach aimed at minimizing the number of
tests needed to classify an object, and its out-
put can be summarized in terms of production
rules. ID3 has been used successfully for vari-
ous classification and prediction applications.

Neural networks and backpropagation. The
foundation of the neural networks paradigm was
laid in the 1950s and has attracted significant at-
tention in the past decade as more powerful
hardware and algorithms have been developed.
Nearly all such “connectionist” algorithms have
a strong learning component. Unlike in symbolic
learning, in connectionist learning knowledge is
learned and remembered by a network of inter-
connected neurons, weighted synapses, and
threshold logic units. Learning algorithms, such
as Delta rule, can be applied to adjust connection
weights so that the network can predict or clas-
sify unknown examples correctly.

Among the many computational models of
neural networks, the backpropagation network
has been shown to be theoretically sound* and
has demonstrated excellent capability for vari-
ous complex classification and prediction prob-
lems. Activation of a backpropagation network
flows from the input layer through hidden lay-
ers to the output layer (see Figure A). Each unit
in a layer is connected in the forward direction
to every unit in the next layer. A backpropaga-
tion network may contain multiple hidden lay-
ers in between. Knowledge of the network is
encoded in the (synaptic) weights between
units. The activation levels of the units in the
output layer determine the output of the whole
network. Despite promising results in various

kpropaga-
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Applications. Several studies have compared
the performance of these techniques — as
well as some systems that use hybrid repre-
sentations and learning techniques — for dif-
ferent “toy” and real-life applications. In one
study, Mooney and his colleagues found that
their overall performance was comparable,
but that ID3 was faster than a backpropaga-
tion net, while the backpropagation net was
more adaptive to noisy data sets.> Weiss and
Kapouleas suggested using a resampling tech-
nique such as leave-one-out for evaluation.
Discriminant analysis methods, backpropaga-
tion nets, and decision tree-based inductive
learning methods were found to achieve com-
parable performance for several data sets.®
Fisher and McKusick found that when using
batch learning, backpropagation performed as
well as ID3, but was more noise-resistant.
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;ge finishing time
races;
age grade of the
he dog competed
in; and
® up grade: weight given to a dog when drop-
ping down to less competitive race grade.

Once we identified the relevant variables,
the next stage of the project involved data
collection and entry. Some of the variables
or attributes required manipulating the data
in the racing programs to make them useful.
For instance, we averaged the values listed
for a greyhound’s previous seven races to ob-
tain the average break position. The finish
average also required the mean computation
of a variable. Two additional attributes — the
time 3 average and the time 7 average —
were calculated by computing the mean of
the three most recent race times and the seven
previous race times, respectively.

For the race grade average, we assigned
values to each type of grade, with the most
competitive race grade, A, receiving a value
of four. B grade races received the value of
three, C races were assigned a value of two,
and D races received a value of one. All
other types of races, such as maiden races
or training races, received a value of zero.
We then averaged these values to procure
the race-grade-average. We also used pre-
vious race grades to assign values when a
greyhound moved down a race grade cate-
gory. This was necessary to account for
residual effects of racing in a previous more
competitive race. The value assigned for this
“up grade” attribute depended upon how re-
cently the drop in race grade occurred. If the
most recent race was of a higher grade, three
points were assigned; two points were given
if the more competitive race was two races
ago, and so on, until the value of zero was
given for a greyhound that had not raced in
a more competitive event in the last three
races.

Since the dogs compete against each other
directly in a win-lose scenario, we manipu-
lated the data so that the values were rela-
tively scaled. This means that after making
all calculations (such as averaging a dog’s
finish times), we then assigned the lowest
value in one single race to be zero. The other
values were scaled to reflect their difference
from that lowest value. For example, a race
program entry contains eight pieces of data
that represent each of the eight greyhounds’
fastest time. The worst fastest time among

these dogs, say, 32.00 seconds, was assigned
a value of zero. If another dog in that race
had a fastest time of 31.00 seconds, then it
was assigned a value of 1.00 — the differ-
ence between the worst fastest time of 32.00
seconds, and its own time of 31.00 seconds.
Relative scaling of the data was necessary
due to the different statistics associated with
different race grades (greyhounds in grade A
races tended to have faster times).

We used two-thirds of the data training and
one-third for testing. The training stage con-
sisted of 200 races, for a total of 1600 clas-
sified greyhounds. Testing consisted of an
additional 100 races, or 800 new cases. We
did not use any resampling techniques for

tween any two consecutive values) and se-
lects the partition point that reduces entropy
the most.? In essence, the algorithm performs
a binary partition. For our system, we devel-
oped an ID3 program that adopted this orig-
inal design.

We also developed a version of the ID3 al-
gorithm that performed ternary partition for
continuous variables. This variant of the ID3
algorithm first sorted the continuous values
in ascending order, such as (0.12 winner)
(0.15 winner) (0.35 loser) (0.36 loser) (0.45
winner) (0.55 loser) (0.66 winner) (0.70
loser) (0.80 loser) (0.88 loser). It then marked
the “clean” classes on the two ends of the
sorted list as unique classes: {(0.12 winner)
(0.15 winner)} are in the “winner” class, for
example, and {(0.70 loser) (0.80 loser) (0.88
loser)} are in the “loser” class. Other values
in the middle of the list were mixed and re-
mained to be classified using other attributes.

In our experiment, we found that this al-
gorithm tended to reduce more entropy than
the original binary partition algorithm, be-
cause the two ends in the three partitions
were clean classes and thus did not have any
entropy value. This often resulted in a lower
overall entropy value after partition than that
produced by binary partition, which often
generated two large mixed classes. The re-
sulting decision tree was also less complex
than that obtained through binary partition
— ternary partition produced a simple
ternary tree where each level of the tree con-
tained exactly three branches. Binary parti-
tion branched out two ways at each level,
which resulted in a large and more complex
binary tree. However, both algorithms were
equally efficient, especially in comparison
with the neural network algorithms.

In our implementation (in ANSI C and
running on a DECstation 5000/120), it took
only several seconds to build a decision tree
from 1600 training cases. ID3’s result was
simple to understand, and it was easy to trace
the classification decisions.

The attribute break average occupied the
root node. Branches represented the up
grade, the show percentage, the fastest time,
the grade average, the win percentage, time
7 average, finish average, time 3 average, and
place percentage. The decision tree created
by ID3 using ternary partition is shown in
Figure 2. The first five attributes were useful
for deciding first-place winners. Other at-
tributes were helpful for deciding place (sec-
ond place) and show (third place), which
were not considered in our analysis.
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come of winning or losing in the output
layer. Given a greyhound’s past history in
racing and other important features, the net-
work should be able to predict the dog’s
performance in a given race.

The number of hidden units in the hid-
den layers, as well as the number of hidden
layers in a backpropagation network, are
much harder to determine. They provide
the added power of internal representation
that can capture the often nonlinear rela-
tionships between the input and output vec-
tors. Although these hidden units and lay-
ers play an important role in the network,
deciding the exact numbers has never been
easy. Researchers generally agree that a
larger hidden layer results in a more power-
ful network, but that too much power ob-
tained from the training data may be unde-
sirable for predicting new, unknown data (a
generalization problem).” In addition, the
computing time needed for a backpropaga-
tion network is directly proportional (with a
factor often much greater than 1) to the num-
ber of hidden units and layers in a network.
A complex topology may be undesirable for
computational reasons.

The network’s learning rate (€) determines
how far to move toward the gradient of the
surface over the weight space defined by an
error function. A small e will lead to slower
learning, but a large one may cause a move
through weight space that “overshoots” the
solution vector. Based on reports by other re-
searchers,? the range of values we tested for
€ was between 0.25 and 0.35 in an attempt to
avoid local minima. The momentum factor
(o) tends to keep the weight changes moving
in the same direction and allows the algorithm
to skip over small local minima. It can also
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Figure 2. An ID3 decision tree.

the network closer to a convergent state and
helps improve its recall of the training data set.
For different applications and network topolo-
gies, the required number of epochs can be
very different — ranging from a few hundred

- to several thousand. However, large epochs

require longer computing time and may cause
an undesirable generalization problem.

If all possible inputs and outputs are shown
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proper topology and t
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again. But performance on the test set gets
worse. Why? The network has begun to mem-
orize the individual input-output pairs rather
than settling for weights that generally de-
scribe the mapping for all cases. With thou-
sands of real-valued connection weights in the
network, a backpropagation network is theo-
retically capable of storing an entire training
set. This may result in overtraining. Deciding
the proper amount of training is therefore cru-




Table 1. Predictions and payoffs for 100 races.

TecHNIQUE CoRRect INCORRECT Dip noT BET Pavores ($)
Expert 1 19 81 -71.40
Expert 2 17 83 -61.20
Expert 3 18 82 -70.20
1D3 34 50 69.20
Backprop. 20 80 124.80

Table 2. The Backpropagation network’s performance as
a function of training epochs (25 hidden units).

No. oF Races

Epochs PREDICTED CORRECTLY  PAYOFFS ($)

2,500 8 ~73.00

5,000 9 -53.60

7,500 9 ~67.80
10,000 13 -39.80
12,500 15 44.60
15,000 17 9.40
17,500 20 124.80
20,000 19 44,60

sider more elaborate betting systems such as
place (your greyhound must finish either first
or second); show (your greyhound must fin-
ish either first, second, or third), quiniela (two
greyhounds you bet on must finish first and
second), and so on. It could be argued that the
payoff odds are not necessarily correct, since
each bet on a particular dog will change the
payoff odds for that dog. We contend that
since there are numerous bets on any given
dog, the odds would not change significantly
with the additional bet on a particular dog.
Table 1 summarizes the predictions by the
experts, ID3, and the backpropagation net-
work, and their final payoffs for 100 races.
Among the three track experts, the best
predicted the winners in 19 races, but pre-

dicted 81 races incorrectly. For all experts, |

the final payoffs after betting on 100 races ($2
per race) were negative: —$71.40, —-$61.20,
and —$70.20. That is, when following the ex-
perts’ predictions, for a total of $200 bet on
100 races, a bettor lost about $70.

ID3 correctly predicted winners for 34
races, but incorrectly predicted 50 outcomes.
In 26 races, ID3 did not predict any winners,
and thus no bet was placed. The final payoff
for ID3 predictions was $69.20 for the 100
races. Compared with the most successful
expert, ID3 had a more accurate and some-
times more conservative prediction record.
The monetary gain for ID3 was mainly ob-
tained from the high payoffs for a few races
— $24.40 for race 31, $41.20 for race 59, and
$26.80 for race 83. The experts’ best payoff
was $11.40. By analyzing the greyhound at-
tributes objectively, ID3 identified long shots
and thus realized significant monetary gain.
The decision tree created by binary partition
resulted in a $69.00 payoff, which was close
to the $69.20 payoff achieved by the deci-
sion tree created by ternary partition.

Our backpropagation network consisted of
a simple three-layer design. We tested hidden
units of 15, 20, 25, 30, and 35, respectively.
The network of 25 hidden units consistently
made better predictions than other topologies.
Learning rates varied between 0.2 and 0.4,
with a 0.05 increment. Momentum factors

Game scenarios

In a game scenario, participants generally
compete with each other; the best performer
wins, and everyone else loses. Performance,
however, is based on a relative scale — each
performance is relative to the other participants.
A weak performer may still win a game, for ex-
ample, if the other participants are even weaker.

It is assumed that participants’ behaviors or
capabilities are relatively stable in the short
run, but may improve or degrade in the long
run. Furthermore, a game is assumed to be con-
ducted fairly and to be free from other external
human factors (such as cheating). Animal rac-
ing games like horse racing and greyhound rac-

26

were chosen at 0 and 0.1, respectively.
Among these parameters, a learning rate of
0.2 and momentum factor of 0.1 were stable
and converged quickly. After fixing these pa-
rameters, we varied the number of learning
epochs from 2,500 to 20,000, with an incre-
ment of 2,500 epochs. The performances of
these networks are shown in Table 2.

While the prediction accuracy for the
testing races continued to improve when we
increased the training epochs, the network’s
predictive power for the 100 testing races
peaked at 17,500 epochs. The resulting op-
timal backpropagation network predicted
20 races correctly, and mispredicted 80
races. Even though the number of correctly
predicted races was about the same as for
the human experts, their monetary payoffs
were very different. The backpropagation
network gained $124.80 for the 100 races.
As with the ID3 results, the backpropaga-
tion algorithm obtained high payoffs for
several long shots — $78.00 for race 10,
$30.20 for race 37, $30.00 for race 64, and
$26.80 for race 83.

A summary table for the one-way analysis
of variance (using Minitab) in the payoffs of
the different approaches is provided in Fig-
ure 3. The means for the five underlying pop-
ulations (payoffs generated by three experts

! and the two algorithms) were different at the
| 10% significance level (N = 100, P = 0.083,

where N is the sample size, and P the level of
significance). Two sample t-tests revealed that
the backpropagation network outperformed
the best expert (and the other experts) in mon-
etary payoffs at the 10% significance level
(P = 0.084). However, ID3 did not out-per-

ing exhibit these characteristics. Based on these
assumptions, will human experts or machine
learning algorithms predict more accurately?
Salzberg was the first to test an algorithmic
solution to the horse racing problem,' using
general human heuristics to formulate hypbthe-
ses for the Handicapper prediction program.
Handicapper used nine heuristics based on cog-
nitive psychology to predict which horse will
win a race. The heuristics were based on what
Salzberg called “usefulness.” For example, the
“‘unusualness” heuristic focused on a rare or
unusual feature of the situation preceding an
unexpected event; the Occam’s Razor heuristic

preferred simple hypotheses over complex
ones. In several trials, Handicapper picked win
ners better than human experts. The heuristics
and the rationalization process designed for
Handicapper provide a computer system with
an excellent way to select a good hypothesis
from a very large set of candidate hypotheses.
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Figure 3. ANOVA analysis for poyofls. H = somple size; P = significance level; OF = degree of freedom; 55 = sum of squares; M5 = mean square; and F = the F-siatislic.

form the experts at a statistically significant
level (P =0.15) and there was no statistically
significant difference in payoffs between
backpropagation and ID3 (P = 0.68).

In terms of prediction accuracy and mon-
etary payoff, both the backpropagation net-
work and ID3 performed better than human
experts. Both algorithms appeared to be more
robust than humans in their ability to analyze
the large set of racing data objectively and
reach unbiased conclusions. This character-
istic is particularly evident from both algo-
rithms’ convincing prediction of numerous
long shots that human experts failed to iden-
tify. In comparing the two algorithms, ID3’s
decision tree output was more understand-
able than that of backpropagation. In general,
ID3 also predicted more conservatively than
other approaches. The backpropagation net-
work, on the other hand, was more compu-
tationally expensive (and thus very slow), but
made excellent predictions of long shots.

'N THIS EXPERIMENT, ESPECIALLY
during the early stage, experts’ heuristics for
refining the initial performance variables
were critical to the success of the machine
learning algorithms. The 50-plus candidate
variables were reduced to 10 of the most rel-
evant parameters, which effectively reduced
the problem space for this complex and noisy
domain. Some variables were also the results
of computations, such as time 3 average, time
7 average, and so on. Also, the machine-learn-
ing algorithms that we adopted were “super-
vised” learning. That is, the learner was told
the category membership of environmental
observations, and thus the sole learning task
was to summarize the commonality among
members of the same categories and differ-
ences among competing ones.

These algorithms were not adaptive to un-
supervised exploration of relevant variables
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or useful categories in the data using inter-
nalized heuristics. Nevertheless, there are
other machine-learning algorithms that ex-
hibit unsupervised learning capability.’ This
may prove to be one of the most potentially
fruitful research directions for machine learn-
ing or knowledge discovery.
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