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chronic illness and the escalating cost of 
chronic care, the need to facilitate clinical 
decision making for chronic care has never 
been higher. However, existing healthcare 
systems are oriented toward acute problems 
and are inadequate in managing chronic 
conditions. To enable effective chronic care, 
it is critical to be able to capture and rep-
resent a patient's disease progression pattern 
over time so that timely and personalized in-
terventions can be made. 

Electronic health records (EHRs) are a re-
liable source of longitudinal observations for 
monitoring the progression of chronic condi-
tions in clinical practice. Recent years have 
seen surging interests in EHR data analytics 
for clinical decision support and knowledge 
discovery. Although significant progress has 

been made to move the current practice in 
this direction, prognostic modeling frame-
works and tools tailored for longitudinal 
EHR data analysis to support chronic care 
management remain inadequate.

Time-to-event modeling (also known as 
survival analysis) is a statistical technique 
for representing and predicting the length 
of time to an event occurrence based on an 
individual’s traits.1,2 Time-to-event analy-
sis considers not only whether an event will 
occur, but also the length of time to its oc-
currence. We use the phrase “time-to-event 
analysis” instead of “survival analysis” be-
cause it’s more descriptive of the method 
and because survival isn’t our focus. Indeed, 
caring for patients with chronic conditions 
involves a wide array of events other than 

One hundred and forty-one million Americans—almost half the US pop-

ulation—were living with one or more chronic conditions in 2010, and 

the patient population is expected to increase at a speed of more than 10 mil-

lion new cases per decade. Given the increasing number people of living with 
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mortality. For instance, hospitaliza-
tion and the development of severe 
complications are critically important 
events in chronic care. These events 
indicate the severity of a patient’s con-
dition and how well the condition has 
been managed. Time-to-event analy-
sis could inform physicians about a 
patient’s chronic condition and help 
the physician anticipate complica-
tions and plan interventions to reduce 
the patient’s risk of an event.

We offer a general framework of 
time-to-event predictive modeling for 
chronic conditions based on EHRs. 
The proposed framework addresses 
various challenges in constructing a 
predictive model from EHRs and en-
ables the collection of a rich set of 
clinically meaningful features. Fur-
thermore, the integration of data ab-
straction techniques in our modeling 
framework demonstrates improved 
accuracy in time-to-event predictions.

Developing Models 
for Chronic Care
Many studies of prognostic modeling 
are conducted in the context of pro-
spective cohort studies, in which in-
vestigators routinely follow up with 
patients.3 (See the related sidebar for 
further research in this area.) In this 
case, standard statistical methods for 
data analytics exist. These methods, 
however, can’t be directly applied to 
EHR data, especially when we’re ana-
lyzing the progression of chronic dis-
eases. One challenge is the irregularly 
spaced data in EHRs. Many statistical 
methods require balanced panel data 
and/or equidistant time series to ana-
lyze temporal phenomena. Although 
such data are typically available for 
prospective cohort studies, in most 
other clinical scenarios and in EHRs, 
patients typically visit hospitals irreg-
ularly.4 That is, they don’t visit hospi-
tals routinely, and the interval between 
clinical visits is an arbitrary length of 

time. In addition, missing values are a 
prevailing phenomenon in EHR data. 
Patients normally don’t take all tests 
and examinations when they visit hos-
pitals. Often, we only observe some 
phenotype information from patients 
in each of their visits, resulting in miss-
ing values for the others. Finally, EHR 
data are inherently highly dimensional 
and spread across multiple aspects of 
healthcare. Not all the collected data 
are important or relevant. Features 
need to be carefully selected or con-
structed before data analysis to achieve 
the best predictive performance.

Our time-to-event modeling frame-
work differs from prior predictive mod-
eling studies in three ways:

•	We emphasize the use of large-scale, 
observational EHR data for chronic 
disease time-to-event predictive 
modeling.

•	We formulate an innovative guide-
line-based feature selection ap-
proach to capture a wide array of 
clinically meaningful factors in our 
models. This approach is consis-
tent with the spirit and practice of 
evidence-based medicine and en-
ables a clinically rigorous selection 
of features.

•	We integrate data abstraction tech-
niques into our modeling procedure 
to reduce data dimensionality and 
enhance prediction accuracy. Al-
though data abstraction is a com-
mon procedure in modern medical 
informatics research, to our knowl-
edge it hasn’t been used in time-
to-event modeling.

We chose diabetes as our research 
case. According to the World Health 
Organization, the worldwide popula-
tion of diabetic patients is projected to 
grow from 171 million in 2000 to 366 
million in 2030. This study investigates 
the event of diabetes-induced hospital-
ization, which is a strong  indicator that 

the diabetic patient’s health is being 
poorly managed. In our time-to-event 
models, we estimate and predict the 
length of time from the onset diagnosis 
of diabetes to the first diabetes-related 
hospitalization. Through the proposed 
analytical framework, we aim to iden-
tify the factors associated with the 
progression of diabetes and predict in-
dividual patient's long-term risk to dia-
betes-induced hospitalization.

Methods
Figure 1 gives an overview of our re-
search framework, which addresses the 
challenges of irregularly spaced data, 
missing values, and high data dimen-
sionality in EHRs. In addition, we in-
tegrate data abstraction techniques 
and extended Cox models with time- 
dependent covariates in our frame-
work to improve prediction accuracy.

Guideline-Based Feature 
Selection
Clinical practice guidelines are devel-
oped to summarize the state of the art 
clinical research and provide recommen-
dations for optimal management of a 
clinical condition. Guideline recommen-
dations provide standards of care, de-
lineating how clinicians should screen, 
evaluate, and treat a clinical condition. 
As such, in building time-to-event mod-
els for chronic conditions, clinical guide-
lines are an invaluable resource and 
supply critical features for data analysis.

We perform a formal knowledge en-
gineering procedure to extract and en-
code concepts in guidelines, and map 
the concepts to EHR data. For the cur-
rent research case of diabetes, we use 
the American Association of Clinical 
Endocrinologists Diabetes Care Guide-
lines. During the guideline-encoding 
process, we repeatedly consulted two 
clinicians to clarify clinical concepts 
and validate the results.

We extracted and encoded approxi-
mately 100 concepts from the guidelines.  
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Studies of prognostic modeling prevail in the medicine 
and health informatics domains. Table A summarizes 
the areas and methods used in select work on chronic 

conditions.
As Table A shows, multiple methods can be used in prog-

nostic modeling. The Cox model is the most commonly used 
statistical method in these studies, but it was often applied 
on cohort databases in which patient data were purposely 
collected for research. As such, missing values and irregu-
larly spaced observations are often not major issues in 
these databases. However, this isn’t the case in EHRs, as 
noted in the main article.

When missing values are a concern, data imputation is often 
considered. Aditya Khosla and his colleagues compared several 
single imputation methods, such as column mean and linear 
regression.2 These methods are naïve and prone to bias be-
cause they neglect the variance in the data- generation process.

Table A also indicates that prior studies of clinical pre-
dictive modeling, especially in conventional medical re-
search, typically focus on a limited number of features. 
These features are selected only when clinical evidence 
supports their causal relations with the event or outcome 
variable. This evidence-based feature selection approach 
is well- received because it’s in line with the philosophy of 
 evidence-based medicine. However, the resulting feature 

set is very confined, typically about a dozen features. To 
date, it remains unclear how to extend this evidence-based 
approach to select a larger number of features that remain 
clinically justifiable.
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related Work in Prognostic modeling

Table A. Summary of related prior studies.

Study Event/outcome
Data  
source

Feature 
selection

No. of 
features

Modeling 
technique Address missing values

M. Berkan Sesen 
and  colleagues1

Lung cancer one-year  
survival 

CD EB 9 NB, BN No. Use complete data

Aditya Khosla and 
 colleagues2

Stroke risk in 5 years CD SMLB 200 Cox model,3  
SVM

Yes. By single imputation 
methods

Julia Hippisley-Cox 
and colleagues4

Risk of type II diabetes in  
10 years

CD EB 10 Cox model Yes. By multiple 
 imputation

Baek Hwan Cho and 
 colleagues5 

Onset of diabetic  
nephropathy

EHRs SMLB 184 LR, SVM Yes. By temporal 
 abstraction

Julia Hippisley-Cox 
and colleagues6

Risk of cardiovascular 
 diseases in 10 years

CD EB 14 Cox model No. Use complete data

BN = Bayesian network; CD = cohort database; EB = evidence-based; EHR = electronic health record; LR = logistic regression; NB = naïve Bayes; SMLB = statistical or machine-learning based; 
and SVM = support vector machine.

Figure 1. Research framework. The five-component time-to-event framework addresses the issues of irregularly spaced data, 
missing values, and high data dimensionality in electronic health records (EHRs).
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The list of concepts covers evaluations, 
diagnoses, and treatments for diabetes 
as well as various diabetic complica-
tions, including cardiovascular diseases, 
diabetic nephropathy, retinopathy, 
neuropathy, and peripheral diseases. 
We then mapped these concepts to 
the corresponding items in EHRs, 
 resulting in about 400 International 
Classification of Diseases (ICD)-9 di-
agnostic codes, 150 treatments, and 20 
lab tests and physical evaluations.

Temporal Regularization
Irregularly spaced data often cause 
difficulties for temporal data analysis. 
One way to address this problem is to 
construct equidistant temporal grids 
from observations. This temporal reg-
ularization approach is common in 
studies that have unequally spaced 
time series observations. Following 
this approach, we divide a patient’s 
history into monthly intervals. If there 
are multiple observations for the same 
feature in an interval, we take their 
average as a representative value for 
the feature in that interval. If there’s 
no observation in an interval, we con-
sider it as a missing value and address 
it through multiple imputation.

Data Abstraction
The essence of data abstraction is to sup-
press details and highlight higher-order 

meanings, which makes it particularly 
salient to complex problem solving. 
Generally, data abstraction encom-
passes concept and temporal abstrac-
tion. Figure 2 illustrates the two types.

In concept abstraction, each raw 
datum is independently mapped to a 
generalized concept. We map ICD-9 
diagnosis codes to higher-order cat-
egories in the Clinical Classifications 
Software (CCS), and represent medi-
cations by their family names. After 
this concept abstraction procedure, we 
reduce diagnosis features to 41 CCS 
categories, and treatment features to 
11 treatment families. In temporal 
abstraction, numerical time-series in-
formation is represented by symbolic 
codes to reflect temporal states (such 
as high, medium, or low) and trends 
(such as decrease or increase). We per-
form both state and trend abstraction 
for our numerical features. We per-
form state abstraction by discretizing 
values into three bins (high, medium, 
and low), each with the same number 
of observations. Our trend abstraction 
is either upward or downward, de-
pending on whether an observed value 
is followed by a greater or lesser value.

Table 1 summarizes our final fea-
ture set with four major feature cat-
egories. The base features are gender, 
age, and other common lab or physi-
cal tests. The next two categories—

concept abstracted diagnosis features 
(DX features) and concept abstracted 
treatment features (TX features)—are 
binary variables that take the value 0 
before the first appearance of the diag-
nosis/treatment and the value 1 thereaf-
ter. Finally, the temporal abstracted base 
features encode the states and trends of 
the lab/physical test results over time.

Multiple Imputation
Multiple imputation is an effective 
technique for missing data process-
ing and enables a less-biased data 
analysis than single imputation 
methods (for example, filling in the 
column mean). It achieves this by re-
flecting the uncertainly of the missing  
values in multiple imputed datasets. 
Specifically, we generate five imputed 
datasets from the original dataset. In 
each imputed dataset, a missing value 
is filled in by a plausible value ran-
domly sampled from a conditional 
distribution of the observables. The 
uncertainty of a missing value is rep-
resented by its multiple realizations in 
different imputed datasets.

We execute our multiple imputa-
tion procedure using the Amelia II pro-
gram.5 Amelia II makes inferences on 
the missing  values using an expectation- 
maximization algorithm combined 
with a bootstrapping procedure. Com-
pared to other alternative  multiple  

Diabetes mellitus without
complication (CCS 49)

24900 25000 25001 (ICD-9)

79022 79029 7915 7916 79021

HbA1c

Trend

Status

Decrease

Low

Low

Increase

Medium

Medium

High

High

Time

V4585 V5391 V6546

7902

(a) (b)

Figure 2. Two types of data abstraction: (a) concept abstraction and (b) temporal abstraction. CCS stands for Clinical 
Classifications Software and ICD stands for International Classification of Diseases.
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imputation  programs, Amelia II is sim-
pler, faster, and produces more robust 
results that are similar to more sophis-
ticated programs that rely on Markov 
chain Monte Carlo simulations. We 
build models and make time-to-event 
predictions on each of the imputed 
datasets separately. The reported ex-
perimental results are the averaged 
performance over the five datasets.

Extended Cox Model
The Cox proportional hazards model is 
a popular tool for time-to-event analy-
sis.1 The Cox model makes the propor-
tional hazards assumption. An extended 
Cox model allows covariates to be time-
dependent, which alleviates the poten-
tial issue of nonproportional hazards 
and enables a more flexible modeling 

framework.2 The extended Cox model 
is given by

h t t h t X X ti i
i

P

j j
j

P

( , ( )) ( ) exp ( )X = +


= =
∑ ∑0

1 1

1 2

β δ











,

where h(t, X(t)) is the hazard value 
at time t, h0(t) is an arbitrary base-
line hazard function, and X is a 
covariate matrix containing P1 time-
independent covariates and P2 time-
dependent covariates. One of the 
advantages of Cox models in survival 
and time-to-event analysis is that we 
don’t need to specify the baseline 
hazard function h0(t).

Given the constraint on time-invari-
ant covariates, the regular Cox model 
typically estimates time to event based 
on information solely from the initial 

observations. However, chronic con-
ditions persist and evolve over time. 
When the research interest is the pro-
gression of chronic conditions, initial 
observations alone are often insuffi-
cient to construct a robust and accu-
rate time-to-event model. In contrast, 
the extended Cox model allows 
HbA1c, creatinine, and other physio-
logical features to vary with time. For 
similar reasons, we chose the extended 
Cox model rather than other popular 
machine-learning algorithms, such as 
support vector machines or decision 
trees, because these algorithms don’t 
have an elegant approach to deal with 
data censoring and can’t incorpo-
rate time-varying covariates. Finally, 
we don’t consider other parametric 
time-to-event models, such as the ac-
celerated failure time models because 
they require making additional distri-
butional assumptions on the baseline 
hazard h0(t).

We construct three time-dependent 
Cox models. The baseline model uses 
only the base features, which include 
essential phenotype information on 
a patient’s demographic background 
and values of key tests (see Table 1). 
The extended model includes DX and 
TX features along with the base fea-
tures. Finally, the full model further in-
corporates temporal abstracted (TA) 
features.

Results and Discussion
We obtained de-identified EHRs from 
a major 600-bed hospital in Taiwan. 
In our experiment, 1,860 patients 

Table 1. The final feature set for time-to-event modeling.

Category Category code Variables

Base Base Gender, age, smoking, HbA1c, fasting glucose, low-density lipoprotein (LDL) cholesterol, 
 triglyceride, systolic blood pressure, blood urea nitrogen (BUN), creatinine, body weight

Concept abstracted 
diagnosis features

DX Clinical Classifications Software (CCS) classes 3, 49, 50, 51, 53, 58, 59, 60, 87, 89, 91, 95, 98, 
99, 100, 101, 104, 106, 107, 108, 109, 110, 112, 114, 115, 116, 156, 157, 158, 161, 162, 163, 
199, 236, 237, 248, 651, 657, 660, 663, and 670

Concept abstracted 
treatment features

TX angiotensin-converting-enzyme (ACE) inhibitors, angiotensin II receptor blockers (ARBs), 
 amputation, antihypertensive therapy, antiplatelet therapy, dipeptidyl peptidase-4 (DPP4) 
 inhibitors, insulin, lipid-lowering therapy, metformin, sulfonylureas, thiazolidinediones

Temporal abstracted 
(TA) base features

TA States and trends of base features (HbA1c, fasting glucose, LDL cholesterol, triglyceride, 
 systolic blood pressure, BUN, creatinine, body weight)

Table 2. Significant risk factors for hospitalization events due to diabetes.

Risk factors
Feature 
category

Hazard 
ratio

Lower CI* 
bound

Upper CI 
bound

Open wounds of extremities (CCS 236) DX 12.898 1.495 121.187

Acute and unspecified renal failure (CCS 157) DX 11.243 1.569 81.705

Insulin treatment TX 6.082 3.780 9.787

Smoking Base 2.750 1.745 4.336

Antiplatelet therapy TX 2.145 1.200 3.841

Upward trend of body weight TA 1.788 1.238 2.582

Upward trend of fasting glucose TA 1.642 1.098 2.459

HbA1c Base 1.112 1.004 1.233

LDL cholesterol Base 1.007 1.000 1.013

Fasting glucose Base 1.003 1.002 1.004

Sulfonylurea treatment TX 0.663 0.442 0.994

Low-level state of fasting glucose TA 0.545 0.304 0.976

* CI = 95 percent confidence interval.
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 satisfied our selection criteria of hav-
ing an onset diagnosis of diabetes 
from 2003 to 2012. Among them, 
155 had experienced the event (hos-
pitalization due to diabetes). One de-
fining characteristic of survival and 
time-to-event data is right censoring. 
Right censoring occurs when a study 
ends or when a patient is lost to fol-
low-up. As such, we don’t know the 
actual time to an event for right-cen-
sored observations. In this study, we 
consider observations to be right cen-
sored at the last visit of an event-free 
patient.

We evaluate the models by how 
well they discriminate between pa-
tients with and without the event. We 
derive receiver operating character-
istic (ROC) curves and compute the 
area under an ROC curve (AUC) to 
assess a model’s discriminative abil-
ity. Because a patient’s history is di-
vided into monthly intervals, we 
perform prognostic prediction on 
each month until the last event time 
(at the 85th month). Our time-de-
pendent ROC analysis for predictive 
accuracy strictly follows the method 
outlined by Patrick Heagerty and 
Yingye Zheng.6 Figure 3a shows the 
AUC values of the three models over 

time. The average AUC scores for the 
baseline, extended, and full mod-
els are 0.75, 0.87, and 0.90, respec-
tively. As the figure demonstrates, 
the full (extended) model consistently 
outperforms the extended (baseline) 
model on each of the 85 monthly-
based predictions. Figure 3b shows 
the ROC curves of the three mod-
els for the predictions made at the 
42nd month, which is the midpoint 
among all the prediction months. 
The ROC curves for the predictions 
of the other months present similar 
patterns.

Table 2 shows the statistically sig-
nificant covariates in our full model 
(p-value ≤ 0.05 in at least two im-
puted datasets). Hazard ratio is a 
typical measure of effect in time-to-
event analysis. When a hazard ra-
tio is significantly greater (less) than 
one, the risk factor is deemed posi-
tively (negatively) associated with the 
event.  Although we couldn’t find suit-
able prior clinical studies as an ex-
ternal validation source, overall the 
list of risk factors in Table 2 seems 
to be clinically reasonable as vali-
dated by our medical collabora-
tors. Open wounds on  extremities 
are often the result of diabetic foot 

syndrome, which occurs in severe 
 diabetic cases. Renal failure is often 
the result of poorly controlled diabe-
tes. Insulin treatments are prescribed 
when oral medications can no longer 
control the patient’s rising glucose 
level. Smoking and antiplatelet ther-
apy are associated with more frequent 
hospitalizations, likely representing 
the increased risk of stroke, heart at-
tack, and peripheral vascular disease. 
It’s noteworthy that several temporal 
abstracted features are on the list of 
significant risk factors. The upward 
trends of body weight and fasting glu-
cose signify high hazard ratios. On the 
other hand, a low-level fasting glucose 
is associated with fewer hospitaliza-
tion events.

While our modeling framework 
attained a remarkable perfor-

mance in time-to-event predictions 
(an AUC of 0.90 in our full model), 
two limitations of this study point to 
future research. First, we didn’t deal 
with clinical texts. Clinical texts con-
tain rich descriptions of a patient’s 
current and historical conditions. 
However, the inclusion of clinical text 
in  temporal modeling  necessitates 
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Figure 3. Performance comparison: (a) the receiver operating characteristic (ROC) of the area under an ROC curve (AUC) values 
over different prediction points, and as a representative case; (b) the time-dependent ROC curve at the 42nd month.

IS-29-03-Lin.indd   19 7/21/14   11:01 AM



20 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

S m a r t  a n d  C o n n e C t e d  H e a l t H

techniques for temporal text process-
ing. Current systems achieve only 
about 70 percent  accuracy in nor-
malizing temporal expressions.7 We 
therefore limited this study to struc-
tured information in EHRs. Second, 
our guideline-based feature selec-
tion involved extensive manual work 
in encoding guideline concepts and 
mapping them to EHR data elements. 
As such, this approach isn’t as scal-
able as automatic feature selection 
schemes. Future research might also 
consider combining or comparing 
guideline-based feature selection 
with other statistical feature- selection 
methods. 
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