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SCIE NTISTS FROM A  variety of disciplines, including 
physics, sociology, biology, and computing, all 
explore the topological properties of complex systems 
that can be characterized as large-scale networks, 
including scientific collaborations, the Web, the 
Internet, electric power grids, and biological and 
social networks. Despite the differences in their 
components, functions, and size, they are surprisingly 
similar in topology, leading to the conjecture that 
many complex systems are governed by the ubiquitous 
“self-organizing” principle, or that the internal 
complexity of a system increases without being guided 
or managed by external sources. 

Still missing from this line of research, however, is 
an analysis of the topology of “dark” networks hidden 
from view yet that could have devastating effects on 
our social order and economy. Terrorist organizations, 
drug-trafficking rings, arms-smuggling operations, 
gang enterprises, and many other covert networks

are dark networks. Their structures 
are largely unknown to outsiders due 
to the difficulty of accessing and col-
lecting reliable data. Do they share the 
same topological properties as other 
types of empirical networks? Do they 
follow the self-organizing principle? 
How do they achieve efficiency un-
der constant surveillance and threat 
from the authorities? How robust are 
they against attack? Here, we explore 
the topological properties of several 
covert criminal- and terrorist-related 
networks, hoping to contribute to the 
general understanding of the struc-
tural properties of complex systems in 
hostile environments while providing 
authorities insight regarding disrup-
tive strategies. 

Topological analysis focusing on 
the statistical characteristics of net-
work structure is a relatively new 
methodology for studying large-scale 
networks.1,11 Large complex networks 
can be categorized into three types: 
random, small-world, and scale-free.1 
A number of statistics (see Table 1) 
have been developed to study their to-
pology; three of which—average path 
length, average clustering coefficient, 
and degree distribution—are widely 
used to categorize networks. 

In random networks, two arbitrary 
nodes are connected with a probabil-
ity p; as a result each node has roughly 
the same number of links. Random 
networks are characterized by small 
l, small C, and bell-shaped Poisson 
distributions.1 A small l means an ar-
bitrary node can reach any other node 
in a few steps. A small C implies that 
random networks are not likely to 
contain clusters and groups. Studies 
by physicists and computer and social 
scientists have found that most com-
plex systems are not random but pres-
ent small-world and scale-free proper-
ties (see Albert1 for a comprehensive 
review of these studies). 

A small-world network has a sig-
nificantly larger C than its random-
network counterpart while maintain-
ing a relatively small l.11 Scale-free 
networks, on the other hand, are char-
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Knowing the structure of criminal and terrorist 
networks could provide the technical insight 
needed to disrupt their activities. 
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it is able to attract, manifesting the 
“rich-get-richer” phenomenon. 

Analyzing the topology of complex 
systems has important implications 
for our understanding of nature and 
society. Research has shown that the 
function of a complex system may be 
affected to a great extent by its network 
topology.1 For instance, the Web’s 
short average path length makes cy-
berspace a convenient, navigable sys-
tem in which any two Web pages are 
(on average) only 19 clicks away from 

acterized by the power-law degree dis-
tribution, meaning that while a large 
percentage of nodes in the network 
has just a few links, a small percent-
age of the nodes have a large number 
of links.1 Scientists conjecture that 
scale-free networks evolve following 
the self-organizing principle, where 
growth and preferential attachment 
play a key role in the emergence of 
the power-law distribution. Preferen-
tial attachment implies that the more 
links a node has, the more new links 

each other. It also has been shown that 
the greater tendency for clustering in 
metabolic networks corresponds to 
the organization of functional mod-
ules in cells, contributing to the be-
havior and survival of organisms. In 
addition, networks with scale-free 
properties are highly robust against 
random failure and errors but notably 
vulnerable to targeted attacks.5 

methods and Data 
To understand the topology and func-
tion of dark networks we studied four 
terrorist- and criminal-related net-
works: 

Global Salafi Jihad (GSJ).9 This ter-
rorist network’s 366 members (see 
Figure 1) include some from Osama 
bin Laden’s Al Qaeda, connected by, 
perhaps, kinship, friendship, reli-
gious ties, and relationships formed 
after they joined. The GSJ data was 
provided to us by Marc Sageman, a fo-
rensic psychiatrist in private practice 
in Philadelphia and author of Under-
standing Terror Networks.9 The net-
work was constructed entirely from 
open-source data, including publicly 
available documents and transcripts 
of court proceedings and press, schol-
arly, and Web articles. Sageman scru-
tinized and cross-validated the infor-
mation about all nodes (terrorists) 
and links (relationships). However, as 
he pointed out in his book, the data 
is also subject to several limitations. 
First, the members in the network 
may not be a representative sample of 
the global Salafi jihad. The data may 
be biased toward leaders and mem-
bers captured or identified in attacks. 
Second, because most of the sources 
were based on retrospective accounts, 
the data may be subject to self-report-
ed bias. Despite these limitations, the 
data provides stunning insight into 
clandestine terrorist organizations. 

Meth World. In trafficking illegal 
methamphetamines,12 this network 
consisted of 1,349 criminals traced 
and investigated by the Tucson Police 
Department from 1985 to 2002. Be-
cause no information about the social 
relationships among them is directly 
available, we were granted access to 
the police databases and retrieved all 
the crime incidents in which these 
people were involved from 1985 to 
2002. We created a link between any 

table 1: statistics we used for studying network topology. 

statistics Description

Average Path length, l1 the average of the lengths of the shortest paths  
between all pairs of nodes in a network. 

Average clustering coefficient, C11 the average of all individual clustering coefficients, Ci, 
which is the number of links that actually exist among 
node i’s neighbors over the possible number of links  
among these neighbors. 

Average degree, <k>10 the average of all individual degrees, ki, which is  
the number of links that node i has. 

degree distribution, p(k)1 the probability that an arbitrary node has exactly k links.

link density, d10 the number of links that actually exist over the possible 
number of links in a network.

Assortativity, r8 the Pearson correlation between the degrees of two 
adjacent nodes. 

Global efficiency, e4 the average of the inverses of the lengths of the shortest 
paths over all pairs of nodes in a network.

figure 1: the giant component in the GsJ network (data courtesy of marc sageman9).  
the terrorists belong to one of four groups: al Qaeda or central staff (pink), core  
arabs (yellow), maghreb arabs (blue), and southeast asians (green). each circle  
represents one or more terrorist activities (such as the september 11 attacks and  
the Bali bombing) as noted. 

9/11 Attacks, 2001

Bali Bombing, 2002

bin Laden
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two of them if they committed at least 
one crime together for which they 
were convicted. 

Although the network was care-
fully validated by the crime analysts 
in the Tucson Police Department,12 
the co-occurrence links we generated 
from crime-incident records may not 
reflect the real relationships among 
the criminals. Two related criminals 
would appear to be unconnected if, 
for example, they never committed 
a crime together. On the other hand, 
a coincidental link may connect two 
criminals if they happened to have 
participated in the same crime. These 
two problems—missing link and co-
incidental link—are also common in 
other types of networks (such as those 
involving movie actors12) based on 
the co-occurrence of two nodes in the 
same events or activities. 

Another group of 3,917 criminals in-
volved in gang-related crimes in Tucson 
from 1985 to 2002.12 As in Meth World, 
the links in this network were gener-
ated through co-occurrence analysis 
of the crime-incident records. 

A terrorist Web site network (“the 
Dark Web”). In 2005, based on reliable 
government sources, we identified 104 
Web sites created by four major inter-
national terrorist groups—Al-Gama’a 
al-Islamiyya, Hizballa, Al-Jihad, and 
Palestinian Islamic Jihad—fetching 
all of their pages and extracting all of 
their hyperlinks. We recognized a link 
between any two Web sites if at least 
one hyperlink existed between any 
two Web pages in them. 

Results 
Table 2 lists the basic statistics of the 
four elicited networks. Like many oth-
er empirical networks, each of them 
contains many isolated components 
and a single giant component. The gi-
ant component in a graph is defined as 
the largest connected subgraph.1 The 
separation between the 356 terrorists 
in the GSJ network and the remaining 
10 terrorists is because we found no 
valid evidence to connect the 10 terror-
ists to the giant component in the net-
work. The giant components in Meth 
World and the gang network contain 
only 68.5% and 57.0% of the nodes, 
respectively. This may be because we 
collected the data from a single law-
enforcement jurisdiction that might 

lack complete information about all 
relationships among criminals, caus-
ing missing links between the giant 
component and the smaller compo-
nents. The isolated components in 
the Dark Web are possibly the result 
of the differences in the four terrorist 
groups’ distinctive ideologies. 

As in many other network-topology 
studies (such as Barabási2), we per-
formed a topological analysis on only 
the giant component in the four elic-
ited networks. Table 2 lists the average 
degrees and maximum degrees of the 
four networks, showing that some ter-
rorists in the GSJ network and some 
terrorist Web sites in the Dark Web 
are extremely popular, connecting to 
more than 10% of their nodes. 

This “assortativity” reflects the 
tendency for nodes to connect with 
others that are similarly popular in 
terms of link degree. The assortativ-
ity coefficients of the four networks 
are all significantly different from 0. 
The GSJ and the gang networks pres-
ent positive assortativity, meaning 
that popular members tend to con-
nect with other popular members. In 
positively assortative networks, high-
degree nodes tend to cluster together 
as core groups,8 a phenomenon evi-
dent in the GSJ network in which bin 
Laden and his closest cohorts form 

the core of the network and issue com-
mands to other parts of the network.9 
In contrast, Meth World and the Dark 
Web have negative assortativity coeffi-
cients, or “disassortativity.” 

Meth World consists of drug deal-
ers selling illegal methamphetamine 
to many individual buyers who do not 
connect with many other buyers or 
dealers. Moreover, studies have found 
that street drug-dealing organizations 
are led by a few high-level individuals 
who connect with a large number of 
low-level retail drug dealers.6 Because 
high-degree nodes connect to low-de-
gree nodes, Meth World is character-
ized by disassortative mixing patterns. 
On the other hand, the disassortativity 
in the Dark Web is the result of the fact 
that the popular Dark Web sites rou-
tinely receive many inbound hyper-
links from less popular Web sites. 

To ascertain if the dark networks are 
small worlds, we calculated average 
path lengths, clustering coefficients, 
and global efficiency (see Table 3). For 
each network, we generated 30 ran-
dom counterparts with the same num-
ber of nodes and the same number of 
links as in the corresponding elicited 
networks. We found that all of them 
have significantly high clustering co-
efficients compared to their random 
counterparts. Moreover, although the 

table 2. Basic statistics and scale-free properties concerning dark networks.  
the numbers in parentheses in the third row are the percentage of total nodes  
included in the giant components. the numbers in parentheses in the fifth row  
are the percentage of total nodes connected to the highest-degree nodes. 
** p-value < 0.05  * p-value < 0.01 

GsJ meth world Gang network Dark web

number  
of nodes, n

366 1349 3917 104

number  
of links, m

1247 4784 9051 156

size of Giant component 356  
(97.3%)

924 
(68.5%)

2231 
(57.0%)

80  
(77.9%)

Average  
degree, <k>

6.97 4.62 5.74 3.88

Maximum degree 44 
(12.4%)

37 
(4.0%)

51 
(2.3%)

33 
(41.3%)

link density, d 0.02 0.01 0.003 0.05

Assortativity, r 0.41** -0.14** 0.17** -0.24*

Power-law distribution 
exponent, g

1.38 1.86 1.95 1.10

Goodness of Fit, R2 0.74 0.89 0.81 0.82
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ten used for soliciting new members 
and donations, the relatively long path 
length may be due to the reluctance 
of terrorist groups to share resources 
with other terrorist groups. 

Moreover, the dark networks pres-
ent scale-free properties with power-
law degree distributions in the form 
of p(k) ~ k-g. Because degree-distribu-
tion curves fluctuate, we display the 
cumulative degree distributions, P(k), 
in a log-log plot (see Figure 2). P(k) is 
defined as the probability that an arbi-
trary node has at least k links. Figure 2 
also outlines the fitted power-law dis-
tributions. The last two rows of Table 
1 report the exponent value, γ, and the 
goodness-of-fit, R2, for each network. 
Figure 2 shows that all these networks 
are scale-free. The power-law distri-
butions fit especially well at the tails. 
Note that the three human networks 
display two-regime scaling behavior, 
which has also been observed in other 
empirical networks (such as those in-
volving scientific collaboration).2

Two mechanisms have been pro-
posed to account for the emergence 
of two-regime power-law degree 
distributions during the evolution 
of a network.2 First, new links may 
emerge between existing network 
members. This emergence implies 
that criminals or terrorists who were 
not related previously could become 
related over time. This assumption 
is logical since two unacquainted 
members could become acquainted 
through a third member who knows 
each of them. In the GSJ network, 
22.6% of the links were post-joining 
ties formed among existing mem-
bers. Second, an existing link may be 

being detected by authorities as more 
people are involved in a network, 
short path length and link sparseness 
help lower the risk of detection and 
enhance efficiency of communica-
tion. As a result, the global efficiency 
of each network is compatible to their 
random-network counterparts. 

On the other hand, a high cluster-
ing coefficient contributes to the local 
efficiency of all four dark networks. 
Previous studies have shown evidence 
of groups and teams in these networks 
in which members tend to have dens-
er and stronger relationships with one 
another.9,12 Communication among 
group members becomes more ef-
ficient, making a crime or an attack 
easier to plan, organize, and execute. 

We also calculated the path length 
of other nodes to central nodes, find-
ing that members in the three stud-
ied criminal and terrorist networks 
are extremely close to their leaders. 
For example, the terrorists in the GSJ 
network are on average only 2.5 links 
away from bin Laden himself, mean-
ing his command is able to reach an 
arbitrary member through only two 
mediators. Similarly, the average path 
length to the leader of Meth World is 
only three links.12 Such a short chain 
of command also means communica-
tion efficiency. 

Special attention should be paid to 
the Dark Web. Despite the small size 
of its giant component (80 nodes), 
the average path length is 4.70 links, 
only slightly larger than the 4.20 links 
in the GSJ network, which has almost 
nine times more nodes. Since hyper-
links help visitors navigate Web pages 
and because terrorist Web sites are of-

differences are statistically significant 
(greater than three standard devia-
tions), the average path length of the 
four networks (except for the gang net-
work) is just slightly greater than their 
random counterparts. 

These small-world properties im-
ply that terrorists or criminals are able 
to connect with any other member in a 
network through only a few mediators. 
In addition, the networks are sparse, 
with very low link density. These prop-
erties have important implications for 
the communication efficiency of the 
networks. Due to the increased risk of 

figure 2: cumulative degree distributions: 
(a) GsJ network, (b) meth world, (c) gang 
network, and (d) Dark web. 

0.001

0.01

101 100

0.1

1

P
(k

)

k

GSJ

0.001

0.01

101 100

0.1

1

P
(k

)

k

Meth World

Data Power-LawLegend

0.001

0.01

101 100

0.1

1

P
(k

)

k

Gang Network

0.001

0.01

100 100

0.1

1

P
(k

)

k

Dark Web

(a)

(b)

(c)

(d)

table 3: small-world properties of dark networks. each network includes  
the metrics in the elicited network (data) and the metrics in the random graph  
counterpart (random). numbers in parentheses are standard deviations. 

GsJ meth world Gang network Dark web

Data Random Data Random Data Random Data Random

Average Path 
length, l

4.20 3.23 
(0.040)

6.49 4.52  
(0.056)

9.56 4.59 
(0.034)

4.70 3.15 
(0.108)

Average 
clustering 
coefficient, C

0.55 0.020 
(0.0029)

0.60 0.005 
(0.0014)

0.68 0.002 
(0.0005)

0.47 0.049 
(0.0155)

Global  
efficiency, e

0.28 0.33 
(0.004)

0.18 0.23 
(0.003)

0.12 0.23 
(0.001)

0.30 0.34 
(0.019)
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rewired—a strong possibility in GSJ 
and the Dark Web. However, such re-
wiring would not affect Meth World 
or the gang network because a co-
occurrence link could not be rewired 
once it was created. 

An interesting topology-related 
question is what mechanisms play a 
role in producing the properties we 
observed in dark networks? Short av-
erage path length, high clustering co-
efficient, power-law degree distribu-
tions with two-regime scaling behavior 
in the human networks? That is, can 
we regenerate the four dark networks 
based on known mechanisms (such as 
growth and preferential attachment)? 
To answer, we conducted a series of 
simulations in which we generated 
30 networks for each elicited human 
network based on three evolutionary 
mechanisms: 

Growth. Starting with a small num-
ber of nodes, at each time step we add 
a new node to connect with existing 
nodes in the network; 

Preferential attachment. The proba-
bility that an existing node will receive 
a link from the new node depends on 
the number of links the node already 
maintains. The more links it has the 
more likely it will receive a new link; 
and

New links among existing nodes. At 
each time step, a random pair of exist-
ing nodes may connect, depending on 
the number of common neighbors they 
have. The more common neighbors 
they share the more likely they will also 
be connected with each other. 

We expected that the first two 
mechanisms would generate a power-
law degree distribution1 and that the 
third would generate a high clustering 
coefficient and two-regime scaling be-
havior.2 Our simulations showed that 
the power -law degree distributions 
are easily regenerated, with R2 ranging 
from 0.83 (the gang network) to 0.88 
(GSJ). The two-regime scaling behav-
ior was also present in the simulated 
networks for the human networks. 
However, the highest clustering coef-
ficient in a simulation was only 0.24 
(GSJ), far less than what we obtained 
from the elicited networks (0.55–0.68). 
This finding implies that some other 
mechanisms must have contributed 
to the substantially high clustering 
coefficients we observed in the dark 

networks. We suspect that member 
recruitment is one such mechanism. 
Employing active recruitment meth-
ods, subgroups of terrorists or crimi-
nals are able to attract new members 
into their groups. The new members 
quickly become acquainted with 
many existing members, substantially 
increasing the clustering coefficients. 

caveats 
A notable point is that two problems 
may have affected the structures of the 
three elicited human networks—GSJ, 
Meth World, and the gang network. 
First, they may have missing links that 
can cause the networks to appear to 
be less efficient; there may actually be 
hidden “shortcuts” connecting dis-
tant parts of the networks. Second, the 
presence of coincidental “fake” links 
might cause the elicited networks 
to be more efficient than they would 
otherwise be since these links are not 
communication channels. 

To test how the results would be 
affected by missing links, we added 
various percentages of the existing 
links to the elicited networks based 
on three effects used in missing-link-
prediction research:7

Random effect. A link is added be-
tween a randomly selected pair of 
nodes not originally connected; 

Common neighbor effect. A link is 
added between a pair of unconnected 
nodes if they share common neigh-
bors; the more common neighbors 
they share the more likely they will be 
connected; and 

Preferential attachment effect. The 
probability that a pair of unconnected 
nodes will be linked together depends 
on the product of their link degrees. 

We found that the small-world and 
scale-free properties of the four net-
works do not change when missing 
links are added. For example, when 
we added up to 10% of the links, the 
average path lengths ranged from 3.55 
links (GSJ, preferential-attachment 
links added) to 9.45 links (the gang 
network, common-neighbor links 
added); the clustering coefficients 
ranged from 0.45 (GSJ, random links 
added) to 0.67 (the gang network, 
common-neighbor links added); and 
the R2 of power-law degree distribu-
tions ranged from 0.61 (GSJ, random 
links added) to 0.93 (the gang network, 

the terrorists in  
the GsJ network 
are on average  
only 2.5 links  
away from bin 
Laden himself, 
meaning his 
command  
is able to reach  
an arbitrary 
member through 
only two mediators. 
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preferential-attachment links added). 
We also randomly removed percent-

ages of links to test the effect of “fake” 
links on the results, finding they were 
still valid even when we removed 10% 
of the links. 

Prior research found that network 
topology has a significant effect on 
a network’s robustness against fail-
ure and attacks and that scale-free 
networks are robust against failure 
(random removal of nodes).5 Because 
we found that the four dark networks 
have scale-free properties, we tested 
their robustness against only targeted 

attacks. We simulated two types of 
attacks in the form of node removal: 
those targeting hubs and those tar-
geting bridges. While hubs are nodes 
that have many links (high degree), 
bridges are nodes through which pass 
many shortest paths (high “between-
ness”).10 When simulating the attacks 
we distinguished between two attack 
strategies: simultaneous removal of a 
fraction of the nodes based on a mea-
sure (degree or betweenness) with-
out updating the measure after each 
removal and progressive removal of 
nodes with the measure being updat-

ed after each removal. 
We plotted the changes in S (the 

fraction of the nodes in the giant 
component), <s> (the average size of 
remaining components), and aver-
age path length after some nodes are 
removed. We found that progressive 
attacks are more devastating than 
simultaneous attacks. Progressive 
attacks are similar to “cascading fail-
ures” in the Internet where an initial 
failure might cause a series of failures 
because high-traffic volume is redi-
rected to the next bridge node. 

Figure 3 (a) and (b) shows the differ-
ence between the network reactions to 
bridge attacks and to hub attacks. The 
critical points, f, at which the network 
falls into many small components, are 
marked in the figure. The behavior of 
Meth World and the gang network is 
similar to the behavior of the GSJ net-
work, showing that these terrorist and 
criminal networks are more sensitive 
to attacks targeting bridges than to 
those targeting hubs (fb < fh). However, 
in Figure 3(b), fb and fh are very close, 
indicating that hub attacks and bridge 
attacks are equally effective at disrupt-
ing a one-regime scale-free network. 

These results are consistent with 
findings from a prior study5 that pure 
scale-free networks are vulnerable to 
both hub and bridge attacks, while 
small-world networks are more vul-
nerable to bridge attacks. In small-
world networks consisting of commu-
nities and groups, many bridges may 
link different communities together. 
Intuitively, when they are removed, 
the network should quickly fall apart. 
Note that a bridge may not necessarily 
be a hub since a node connecting two 
communities can have as few as two 
links. Small-world networks (such as 
dark networks) are thus more vulner-
able to bridge attacks than to hub at-
tacks. 

In the four dark networks we stud-
ied, bridges and hubs are usually 
not the same nodes. The rank order 
correlations between degree and be-
tweenness in GSJ, Meth World, and 
the gang network are 0.63, 0.47, and 
0.30, respectively. Note that although 
bridge attacks are more devastating, 
strategies targeting the hubs are also 
fairly effective since the networks have 
scale-free properties. Hub attacks and 
bridge attacks can be equally effec-

figure 3: Dark-network robustness against attacks: (a) progressive attacks  
against the GsJ network and (b) progressive attacks against the Dark web.  
two types of attack are hub (filled markers) and bridge (empty markers). 
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tive in tearing apart a pure scale-free 
network (such as the Dark Web, with 
a high degree-betweenness-rank-or-
der correlation, 0.70) in which hubs 
function simultaneously as bridges 
connecting different parts of the net-
work. 

conclusion 
Dark networks (such as those involving 
terrorists and criminal narcotics traf-
fickers) are hidden from nonpartici-
pants yet could have a devastating ef-
fect on our social order and economy. 
Understanding their topology yields 
greater insight into the nature of clan-
destine organizations and could help 
develop effective disruptive strate-
gies. However, obtaining reliable data 
about dark networks is extremely dif-
ficult, so our understanding of them 
remains largely hypothetical. To the 
best of our knowledge, the data sets 
we explore here, though subject to 
limitations, are the first to allow for 
statistical analysis of the topologies of 
dark networks. 

We found that the covert networks 
we studied share many common topo-
logical properties with other types of 
networks. Their efficiency in terms of 
communication and information flow 
and commands can be tied to their 
small-world structures, which are 
characterized by short average path 
length and a high clustering coeffi-
cient. In addition, we found that due 
to their small-world properties, dark 
networks are more vulnerable to at-
tack on their bridges that connect dif-
ferent communities within them than 
to attacks on their hubs. This finding 
may give authorities insight for intel-
ligence and security purposes. 

Another interesting finding about 
the three elicited human networks we 
studied is that their substantially high 
clustering coefficients (not always 
present in other empirical networks) 
are difficult to regenerate based on 
only known network effects (such as 
preferential attachment and small-
world effects). Other mechanisms 
(such as recruitment) may also play an 
important role in network evolution. 
Other research has found that alter-
native mechanisms (such as highly 
optimized tolerance) may govern the 
evolution of many complex systems in 
environments characterized by high 

risk and uncertainty.3 Our future re-
search will focus on the effects of such 
alternative mechanisms on network 
topology. In addition, our findings are 
all based on a static view of the net-
works we studied; that is, we did not 
consider a large variety of dynamics 
that might have taken place in the evo-
lution of the networks, so evolution 
study is definitely in our plans for fu-
ture research. 

Please also note that care is needed 
when interpreting these findings. Be-
cause dark networks are covert and 
largely unknown, hidden links may 
be missing in the elicited networks. 
These links may play a critical role in 
maintaining the function of the covert 
organizations. As a result, one must be 
extremely cautious when a decision is 
to be made to disrupt them.  
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to the best of our 
knowledge, the data 
sets we explore 
here, though subject 
to limitations, are 
the first to allow for 
statistical analysis 
of the topologies  
of dark networks. 




