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International dark web platforms operating within multiple geopolitical regions and languages host a myriad
of hacker assets such as malware, hacking tools, hacking tutorials, and malicious source code.  Cybersecurity
analytics organizations employ machine learning models trained on human-labeled data to automatically
detect these assets and bolster their situational awareness.  However, the lack of human-labeled training data
is prohibitive when analyzing foreign-language dark web content.  In this research note, we adopt the compu-
tational design science paradigm to develop a novel IT artifact for cross-lingual hacker asset detection
(CLHAD).  CLHAD automatically leverages the knowledge learned from English content to detect hacker
assets in non-English dark web platforms.  CLHAD encompasses a novel Adversarial deep representation
learning (ADREL) method, which generates multilingual text representations using generative adversarial
networks (GANs).  Drawing upon the state of the art in cross-lingual knowledge transfer, ADREL is a novel
approach to automatically extract transferable text representations and facilitate the analysis of multilingual
content.  We evaluate CLHAD on Russian, French, and Italian dark web platforms and demonstrate its
practical utility in hacker asset profiling, and conduct a proof-of-concept case study.  Our analysis suggests
that cybersecurity managers may benefit more from focusing on Russian to identify sophisticated hacking
assets.  In contrast, financial hacker assets are scattered among several dominant dark web languages.  Mana-
gerial insights for security managers are discussed at operational and strategic levels.
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Introduction

Cybercrime is estimated to cost the global economy $6 trillion
annually by 2021 (Morgan, 2017).  A large portion of cyber-
crime stems from the dark web (Chen, 2012), a conglomerate
of international and ever-evolving online platforms mainly
characterized by hacker forums and dark net markets (DNMs)
(Pastrana et al., 2018).  The dark web is rife with malicious
assets that hackers can leverage to launch attacks that com-
promise the cybersecurity of individuals and organizations. 
Hacker assets include malware, hacking tools (e.g., phishing/
carding tools), hacking tutorials (e.g., procedures to monetize
stolen credit cards), and malicious source code (Benjamin et
al., 2019).  Dark web content is a valuable cybersecurity
resource as it provides reconnaissance on hacker assets. 
These assets reflect hackers’ tools, techniques, and procedures
(TTP) and provide a unique opportunity to understand adver-
saries’ arsenals and capabilities.

The popularity of dark web platforms among cybercriminals
has led to an increase in the number of illicit items from
several thousand in 2013 to hundreds of thousands in 2018
(Dittus et al., 2018).  Given the magnitude of the dark web, it
is impractical for human analysts to manually sift through the
content to identify hacker assets.  However, automatically
detecting hacker assets among thousands of other similar
illegal items (e.g., pirated e-books, digital goods) is a non-
trivial task.  Keyword-based searching approaches are prone
to inclusion and exclusion errors (Ebrahimi et al., 2020). 
Recognizing this issue, recent cybersecurity reports suggest
utilizing automated machine learning (ML) techniques to
monitor the dark web for hacker assets (Tolido et al., 2019). 
While ML approaches hold significant promise in automating
hacker asset detection, their training procedures require
human-labeled data, which is expensive and time consuming
to obtain (Portnoff, 2018).  This issue becomes more pro-
nounced when performing hacker asset detection in foreign
languages.  The language barrier makes acquiring human-
labeled training data more expensive for non-English dark
web platforms (Ebrahimi et al., 2018).  ML models’ perfor-
mance often suffers in low-resource environments that lack
human-labeled data (Tian et al., 2018).  Current cybersecurity
analytics studies attempt to alleviate this issue by using
machine translation (MT) services to translate non-English
(low-resource) data to English where more labeled training
data exists (high-resource) (Samtani et al., 2017).  However,
MT services are trained on general-purpose corpora from the
web (e.g., Wikipedia articles), and are often not suited for
translating domain-specific languages (Devlin et al., 2019;
Johnson et al., 2017).  Moreover, the hacker-specific language
in the dark web is rife with jargon causing mistranslations that
affect hacker asset detection performance (Yuan et al., 2018).

Today, Russian, French, and Italian are among the most com-
mon languages in the dark web (Schäfer et al., 2019).  Nation-
specific dark web platforms differ in the type of hacker assets
they host (Benjamin & Chen, 2016).  Thus, analyzing non-
English content helps security analysts and others better
understand the global cybersecurity landscape (Schäfer et al.,
2019).  Accordingly, scholars have emphasized the critical
need for multilingual dark web cybersecurity analytics
research (Benjamin et al., 2019).  One promising approach for
responding to this need is to leverage knowledge from human-
labeled English content to analyze low-resource non-English
content, known as cross-lingual knowledge transfer (CLKT). 
Against this backdrop, we adopt the computational design
science paradigm (Rai, 2017) to develop a novel CLKT
framework, cross-lingual hacker asset detection (CLHAD), to
automatically detect hacker assets in non-English dark web
platforms without MT.  At the core of CLHAD stands a novel
adversarial deep representation learning (ADREL) method. 
Drawing upon state-of-the-art methodologies in generative
adversarial networks (GANs), ADREL is a novel method that
automatically extracts language-invariant representations from
English contexts and transfers them to non-English contexts
without requiring external resources (e.g., human- or machine-
translated corpora) or extensive human-labeled training data. 
Rather than relying on lexicons to translate words while
ignoring their context, ADREL constructs representations
from textual descriptions of dark web hacker assets that
embed salient features from the source and target language. 
Our study contributes to cybersecurity analytics by presenting
a novel multilingual hacker asset detection framework
(CLHAD with ADREL) and conducting multilingual hacker
asset profiling on the international dark web.  Based on the
results of this profiling, security managers may benefit more
from focusing on Russian platforms in identifying sophisti-
cated hacking assets.  In contrast, identifying financial hacker
assets requires attending to several dominant languages in the
dark web.

Research Background

Three areas of literature are examined.  First, we explore IS
cybersecurity literature to position our work within cyber-
security analytics, the overarching area for hacker asset detec-
tion.  Second, we review the prevailing cybersecurity analytics
methods for automated hacker asset detection in the dark web. 
Third, we review CLKT literature to guide the transfer of
knowledge from English to non-English content as an effec-
tive approach to reduce human labeling costs.  Based on the
reviews, we identify research gaps and the research problem
we study in this work.
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IS Cybersecurity Literature and
Cybersecurity Analytics

IS cybersecurity studies can be categorized by their paradigms
into behavioral, economic, and computational design science. 
Recent studies in the behavioral paradigm focus on modeling
user behavior in cybersecurity, including habituation to
security warnings (Vance et al., 2018), user training for miti-
gating phishing attacks (Jensen et al., 2017), and operational
risk management (S. Yang et al., 2017).  Studies in the econ-
omic paradigm focus on modeling the economic impact of
security phenomena (e.g., the impact of law enforcement and
discussions in hacker forums on DDoS attacks; Hui et al.,
2017; Yue et al., 2019) and the impact of diversifying soft-
ware resources on security risk (Temizkan et al., 2017).  The
emergence of high-impact and publicly available dark web
data (as opposed to proprietary data sources) has given birth
to a stream in IS cybersecurity research that focuses on cyber-
security analytics (Chen et al., 2012).  Studies in this stream
often adopt the computational design science paradigm to
develop novel IT artifacts that provide ML models for auto-
mated decision-making (Benjamin et al., 2019; Li et al., 2016;
Yin et al., 2019).  These studies construct models for various
analytical cybersecurity tasks such as de-anonymizing cyber-
criminals (Yin et al., 2019), classifying hacker assets (Ebra-
himi et al., 2020; Samtani et al., 2017), and identifying key
hackers (Benjamin et al., 2016; Li et al., 2016).  However,
these studies either offer monolingual models (e.g., English
only) or rely on MT.  The rapid growth of the international
dark web calls for novel cybersecurity analytics methods
capable of digesting multilingual content to support global
automated hacker asset detection.

Cybersecurity Analytics for Automated Hacker
Asset Detection in the Dark Web

Most online platform analytics studies focus on well-
structured English content culled from well-known social
media platforms such as Twitter and Facebook (Shore et al.,
2018).  In contrast, dark web platforms contain a plethora of
unstructured, non-English content and hacker jargon that chal-
lenge the applicability of the existing analytics approaches to
hacker asset detection.  Consistent with Benjamin et al. 
(2019), hacker assets can be identified as hacking tools that
are software designed to circumvent security controls and
illicitly manipulate technologies (e.g., remote access Trojan,
carding tools), malicious source code (e.g., uncompiled exe-
cutables or scripts), and hacking tutorials that provide instruc-
tions to hackers for executing specific tasks (e.g., stealing
cryptocurrency).  Non-hacker assets have limited cyber-
security relevance or value and include digital goods (e.g.,
illicit multimedia), copyrighted software, pirated e-books,

counterfeits, drugs, forged documents, and others.  Table 1
summarizes recent automated hacker asset detection research
in the dark web in two key dimensions: the examined lan-
guage and approach to analyze non-English content.

Prevailing hacker asset detection methods leverage ML
algorithms such as SVM and K-means (Marin et al., 2016;
Nunes et al., 2016; Portnoff, 2018), deep learning (Grisham
et al., 2017; Queiroz et al., 2019), topic modeling (Deliu et
al., 2017), and keyword search (Benjamin & Chen, 2015). 
Most studies support only English content due to the high cost
of non-English human-labeled data, which could be attributed
to language barriers.  Also, data labeling remains an issue in
studies that examine non-English content by constructing
separate monolingual models for each language (Duong et al.,
2016).  To alleviate this issue, some studies employ MT to
leverage the English labeled data for non-English content. 
However, MT errors can lower the performance of automated
hacker asset detection for two major reasons.  First, prevailing
MT services are trained on general surface web documents
such as books, news, and Wikipedia articles (Devlin et al.,
2019) or European Parliament records (Johnson et al., 2017),
for which human-translated versions exist.  Thus, they are not
designed for domain-specific, low-resource applications such
as dark web cybersecurity analytics (Schäfer et al., 2019),
where the hacker-specific language is laden with evolving
jargon that causes numerous word order and semantic transla-
tion errors (Benjamin & Chen, 2015).  Second, MT services
use sequence learning models that require high-quality
human-translated documents as ground truth (Cao & Xiong,
2018).  Obtaining multilingual translation training corpora is
far more expensive than human-labeled data for text classifi-
cation (Duek & Markovitch, 2018).  CLKT is a promising
approach to address these challenges by transferring known
hacker asset knowledge obtained from high-resource English
platforms to non-English ones (Rasooli et al., 2018).  To our
knowledge, our proposed framework offers the first multi-
lingual hacker asset framework that effectively operationalizes
CLKT without relying on machine translation.

Cross-Lingual Knowledge Transfer (CLKT)

CLKT draws upon a branch of ML known as transfer
learning.  Transfer learning aims to leverage knowledge from
a resource-rich source domain to solve a task in a target
domain that lacks sufficient training data (Weiss et al., 2016). 
CLKT aims to improve learning a target task in a low-
resource language by using the knowledge acquired from a
high-resource language.  Traditional CLKT approaches
require a carefully engineered set of features to transfer. 
However, feature engineering is a manual, ad hoc, labor-
intensive process that needs significant domain knowledge.
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Table 1.  Selected Recent Studies on Automated Hacker Asset Detection in the Dark Web

Year Author(s) Task Method(s) Platform Language(s) Approach

2020 Ebrahimi et al. Identifying hacker assets TSVM 7 DNMs en Monolingual

2019 Queiroz et al. Identifying hacker assets CNN
3 forums,

1 DNM
en Monolingual

2018 Portnoff Classifying malicious posts SVM 8 forums en, ru, de Monolingual

2018 Deliu et al. Identifying hacker assets SVM, LDA 1 forum en Monolingual

2017 Deliu et al. Identifying hacker assets CNN 1 forum en Monolingual

2017 Samtani et al. Classifying malware code SVM, LDA 8 forums en, ru MT

2017 Grisham et al.  Detecting mobile malware RNN 4 forums en, ru, ar MT

2016 Nunes et al. Identifying hacker assets SVM 10 DNMs en Monolingual

2016 Marin et al. Grouping malicious products K-means 17 DNMs en Monolingual

2015 Benjamin et al.
Identifying hacker assets and

vulnerabilities

Keyword

search

5 forums, 4

carding shops
en, ru Monolingual

Note:  CNN: Convolutional Neural Network; LDA: Latent Dirichlet Allocation; SVM: Support Vector Machine; TSVM: Transductive SVM; RNN:

Recurrent Neural Network; en: English; ru: Russian; de: German; ar: Arabic.

Moreover, the extracted features are often context-specific
and may not generalize.

In light of these issues, recent studies have adopted deep
learning methods for CLKT.  Rather than transferring
manually-constructed feature sets, deep architectures auto-
matically extract salient language representations.  Deep
CLKT has been used extensively for tasks such as foreign
Twitter message classification (X. Yang et al., 2017), multi-
lingual sentiment analysis (Dong & de Melo, 2018), and
multilingual speech recognition (Ning et al., 2017).  However,
CLKT relies on external resources, including multilingual
embeddings, parallel corpora, and MT to facilitate knowledge
transfer.  Attaining these external language resources intro-
duces three practical challenges.  First, obtaining high-quality
multilingual embeddings for domain-specific text is expensive
(Li et al., 2017).  Second, constructing parallel corpora is pro-
hibitive due to the high cost of word/sentence alignment
across the source and target languages (Abdalla & Hirst,
2017).  Third, many languages lack reliable MT for domain-
specific text (Abdalla & Hirst, 2017).  These limitations affect
the viability of conventional CLKT approaches for applica-
tions lacking these resources (e.g., dark web).  Our proposed
framework is uniquely positioned in the cybersecurity ana-
lytics literature as an approach that eliminates the need for
these external resources by devising a novel GAN-based
CLKT approach that learns language-invariant representations
from the multilingual text.

In sum, within IS cybersecurity analytics research, approaches
that leverage disparate multilingual data sources are lacking. 
Given the proliferation of international cybercriminal plat-

forms, IT artifacts that enable analyzing both English and
foreign-language dark web content are critically needed.  Past
hacker asset detection studies that use separate monolingual
models suffer from data labeling issues (Queiroz et al., 2019). 
Studies that rely on MT suffer from mistranslations of hacker-
specific language (Samtani et al., 2017).  While CLKT can be
helpful, it often relies on external resources (e.g., parallel cor-
pora) to identify language-invariant features.  Such resources
are often costly to acquire or unavailable for dark web
platforms.  These research gaps motivate developing auto-
mated cross-lingual cybersecurity analytics for hacker asset
detection within international dark web platforms.  From the
managerial perspective, past studies have highlighted the
importance of automated multilingual hacker asset detection
in obtaining holistic views of the global cybersecurity
landscape (Ebrahimi et al., 2020; Samtani et al., 2017) and
facilitating managerial tasks such as identifying hiring needs
for security analysts with specific language proficiencies in
security firms (Spataro, 2021).  As such, CLHAD offers secu-
rity managers a prescriptive way to holistically provide
insights on the dark web in an explainable way.

Methodological Foundation

To inform our design, we first describe the role of deep repre-
sentation learning as an effective approach to automatically
extract language-specific salient features from text.  Then, we
explain GAN as a promising approach to provide language-
invariant representations for CLKT.

1212 MIS Quarterly Vol. 46 No. 2 / June 2022



Ebrahimi et al. / Cross-Lingual Cybersecurity Analytics in the International Dark Web

Deep Representation Learning from Text

The promise of deep learning in text analysis is attributable to
their ability to learn text representations that embed meaning-
ful semantics captured through nonlinear transformations in
each layer of the architecture (Bengio et al., 2013).  These
text representations reduce the dimensionality of text and are
useful for downstream tasks such as text classification. 
Among deep architectures, bidirectional long short-term
memories (BiLSTMs) are specifically designed to extract
such representations from text.  They leverage word order in
forward and backward directions in text and capture
temporally-dependent patterns, which are often missed by
alternative deep architectures (Goldberg, 2017).  This makes
them suitable for extracting monolingual representations from
text (Jozefowicz et al., 2016).  However, the language-
specific text representations generated by BiLSTMs are not
transferable to other languages.  Ganin et al.  (2016) show that
transferable representations must be language-invariant (i.e.,
common to both the source and target languages).  GAN
offers a deep generative model that can extract transferable,
language-invariant features without external resources or
manual feature engineering.

Generative Adversarial Networks (GANs)

GANs employ two neural networks that engage in an adver-
sarial learning (AL) strategy (Goodfellow et al., 2016).  AL is
a game-theoretic approach for training two competing
learning components (i.e., generator and discriminator) simul-
taneously.  The generator (G) is trained to create “synthe-
tized” data that are hard to discern from the “real” training
data.  The discriminator (D) learns to distinguish the real data
from the synthesized data generated by G.  AL can be for-
malized as a minimax game with a value function V:

(1)

where x~Pdata(x) is an instance from the distribution of the
real-word training data and z~Pz(z) denotes an instance drawn
from the prior distribution of the input noise (e.g., uniform or
Gaussian), and D(x)  is the probability that x came from real-
world data.  Equation 1 denotes the total discriminator’s
reward in the game.  G is trained to minimize D’s reward,
while D is trained to maximize its reward by assigning the
correct labels to real and synthesized data.  Ex[log D(x)]
denotes D’s reward if it correctly predicts the real-world data

is genuine.  Similarly, Ez[log (1 – D(G(z)))] represents D’s
reward if it correctly predicts the generated data is synthe-
sized.  In theory, the game terminates when neither G nor D
can improve further (i.e., GAN reaches equilibrium).  GAN’s
AL procedure has four steps.  In Step 1, the generator synthe-
sizes initial samples from noise with a predefined distribution. 
In Step 2, the discriminator is trained to discern between the
real and synthesized data.  Step 3 compares the discrimin-
ator’s prediction with the ground truth via a loss function and
updates the generator’s weights to improve the quality of
synthesized data.  Step 4 repeats Steps 1–3 until the generator
synthesizes data indistinguishable from the real data (i.e.,
GAN equilibrium).  While GANs have promise in facilitating
CLKT without external resources, identifying how the gener-
ator and discriminator can interact to produce a language-
invariant representation requires additional study.

Proposed Research Design

We propose a novel design to address the identified research
gaps.  Figure 1 shows the four major components of our
research design:  (1) data collection and pre-processing,
(2) cross-lingual hacker asset detection (CLHAD), (3) per-
formance evaluation, and (4) explanation and detected hacker
assets profiling.  Each component is detailed in the following
subsections.

Data Collection and Data Pre-Processing

We identified and collected four large-scale hacker forums
(one English, one Russian, and two French) and ten DNMs
(seven English, one Russian, one French, and one Italian). 
These platforms are highly ranked in DeepDotWeb and
DarkWebNews, two well-known directories regularly
accessed by the cybersecurity community.  We designed a
Tor-routed, obfuscated crawler using breadth-first search
(BFS) to extract product descriptions and post content and to
parse them into a relational database.  Our collection includes
862,715 items from 2016 to 2019, with 761,993 hacker forum
posts and 100,722 DNM products.  In total, 242,247 of the
samples are English.  The rest are Russian, French, and
Italian.  Consistent with past literature, our pre-processing
steps include tokenizing the text, converting the characters to
lower-case, and unifying the encodings to UTF-8.  While the
entire collection was used to learn text representations, a
subset of the collection was used to construct the gold-
standard set to train and evaluate the model (Li et al., 2016).
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Figure 1.  Proposed Research Design for Cross-Lingual Hacker Asset Detection

Cross-Lingual Hacker Asset
Detection (CLHAD)

Automatically extracting language-invariant text representa-
tions that are transferable from a high-resource language to a
low-resource target language can aid hacker asset detection in
non-English platforms.  To this end, CLHAD comprises two
stages:  (1) a novel adversarial deep representation learning
(ADREL) method to learn language-invariant representations
from the textual content in English and non-English dark web
platforms and (2) a binary classifier to categorize the learned
representations as hacker assets.  We detail each stage below.

CLHAD Stage 1: Adversarial Deep Represen-
tation Learning (ADREL)

The two-player game in AL facilitates constructing represen-
tations that contain essential features of two languages.  Thus,
we design ADREL to extract language-invariant text represen-
tations from source (English) and target (non-English)
content.  ADREL’s training consists of two phases.  First,
language-specific representations are obtained from the source
and target platforms via BiLSTMs.  Second, language-
invariant features are built from BiLSTM representations with
a novel GAN design.  In Phase 1, input word vectors from dif-
ferent languages are processed with separate BiLSTMs to
generate language-specific representations.  The English and
non-English contexts are denoted by en and NE, respectively. 
Phase 2 learns language-invariant representations with an AL
training approach.  We present each phase in Figure 2.

The design intuition of our proposed AL strategy is that each
language-specific representation (en or NE) needs modifica-
tion to resemble the opposite language’s representation for

knowledge transfer.  In this adversarial setup, the non-English
generator learns to produce representations that carry the
salient features from the English context for hacker asset
detection.  The generators are trained to mimic each other’s
representations, while the discriminator is trained to recognize
the generated representation’s language.  ADREL’s AL setup
is formalized as the minimax game in Equation 2:

(2)

where Ren and RNE are the initial language-specific text
representations.  Gen and GNE are generators for English and
non-English representations, respectively.  Like conventional
GAN, the equation denotes the total discriminator’s reward in
the game.  Both Gen and GNE are trained to minimize D’s re-
ward.  D is trained to maximize its reward by correctly recog-
niz ing the  language  o f  synthes i zed  d a ta . 

 denotes D’s reward if it correctly

labels a synthesized representation coming from a non-

English language.  Finally,  is D’s

reward if it correctly labels a synthesized representation
coming from English.  Both Gen and GNE  play against D until
they learn to generate features that are common to both
languages.

Conceptually, ADREL employs a “Y-shaped” architecture
with two generators and one discriminator to set up the game-
theoretic approach in Equation 2.  Figure 3 compares
ADREL’s architecture and formulation with conventional
GAN.  As shown in Figure 3, ADREL modifies GAN to en-
hance the language-specific text representations (Ren and RNE)
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Figure 2.  Adversarial Deep Representation Learning (ADREL) Architecture

Figure 3.  Extending the Architecture and Formulation of the Standard GAN (left) to ADREL (right) for
Learning Language-Invariant Representations

generated by the BiLSTMs from Phase 1.  Generators aim to
produce language-invariant features with a new AL formu-
lation and a new equilibrium criterion where the discriminator
D cannot distinguish the source language from the target
language.  To solve the minimax problem in Equation 2,
ADREL employs a 5-step iterative process.  Step 1 generates
non-English and English synthesized data R˜ NE and R˜ en by
applying generators Gen and GNE on Ren and RNE.  Step 2 trains
the discriminator D to maximize Equation 2 by recognizing
the language of synthesized representations.  Steps 3 and 4
train generator Gen and GNE, respectively, to minimize Equa-
tion 2 by improving the quality of synthesized data given the
feedback from D.  Steps 1–4 repeat until neither Gen nor GNE

improves significantly (equilibrium).  ADREL’s novelty over
prevailing CLKT and GAN methodologies is three-fold. 

First, ADREL utilizes two generators, each of which is en-
couraged by the same discriminator to create representations
similar to that of the other generator.  This setup creates
language-invariant representations that can support down-
stream tasks with limited and costly labeled training data. 
Second, ADREL eliminates the need for external resources
commonly seen in CLKT studies, including multilingual word
embeddings (Tian et al., 2018), machine-translated corpora
(Zhou et al., 2016), or parallel corpora (Xu & Yang, 2017). 
To the best of our knowledge, ADREL is the first method to
extract language-invariant representations without requiring
external language resources.  Third, ADREL does not define
a prior distribution on the data, and thus can be suitable for
text applications since the text distribution is unknown.  As a
result, ADREL can support emerging applications for which
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there is limited prior knowledge.  For reproducibility, our
model specification and implementation is available at
https://github.com/ebra-8/ADREL.

CLHAD Stage 2: Text Representation Binary
Classification (Hacker Asset Detection)

The second stage in CLHAD aims to assign a label y^  0 {0,1}
non-English text representation from stage 1, where 1 denotes
hacker assets, and 0 indicates non-hacker assets.  CLHAD
outputs the assignment probability as a confidence score that
can be useful for analysts to confirm or override the model’s
suggestions.  After training ADREL, the resultant GNE can be
applied to the non-English data to extract the language-
invariant features.  A binary classifier can then be used to
classify the text representations.  Due to its strong perfor-
mance in text classification, we used a BiLSTM binary
classifier with a logistic loss function (Goldberg, 2017).

Performance Evaluation

To evaluate the performance of our proposed approach, we
first established a gold-standard labeled dataset.  This dataset
served as the basis for two sets of evaluations.  The first
examined the quality of AL training via equilibrium identifi-
cation.  The second used the trained CLHAD model and com-
pared its performance against prevailing ML and CLKT
benchmark methods.

Gold-Standard Dataset Construction

To create a gold-standard testbed, we formed a panel of seven
annotators.  Five were native speakers (two Russian, two
French, and one Italian), and the other two were cybersecurity
experts.  Each language was manually annotated by a native
speaker and a cybersecurity expert.  Initial briefing sessions
were conducted for each language and platform.  To assess
the annotation’s validity, we obtained an initial agreement rate
between the native speakers and cybersecurity experts and
identified the conflicting annotations.  Additional meetings
were conducted to discuss the conflicting annotations between
the annotators.  More than 99% of instances were unani-
mously annotated at this stage.  Non-informative translations
that could not be agreed upon were omitted, resulting in a
gold-standard testbed with 5,976 total documents from four
languages across 14 dark web platforms (3,271 English, 2,271
Russian, 713 French, and 435 Italian documents).  This
labeled dataset was used for training and evaluating ADREL
and is available on our GitHub repository.

Equilibrium Identification

A common challenge in AL is identifying the appropriate
number of training iterations needed to train GAN (Arjovsky
et al., 2017), which in theory signifies reaching equilibrium. 
In practice, this is critical to ensure that the model is not
under-trained so that high-quality representations are
generated for downstream tasks.  Monitoring generator and
discriminator losses (i.e., errors with respect to the ground
truth) during training can help identify the appropriate number
of iterations (Arjovsky et al., 2017).  The training iteration at
which these losses start to stabilize can signify the effective
training of GAN (Goodfellow et al., 2016).  Figure 4 shows
the losses at each training iteration for Russian (top), French
(middle), and Italian (bottom).  The stabilization points are
marked with dashed vertical lines.

While the discriminator and generator losses exhibited an
increasing trend in at the early stages of training, their losses
reduced as the number of training iterations increased until
they almost stabilized after about 500, 600, and 400 iterations
for Russian, French, and Italian, respectively.  These results
guided the number of ADREL’s training iterations in bench-
mark evaluations.

Benchmark Evaluation

We systematically evaluated CLHAD against state-of-the-art
benchmark methods for hacker asset detection in Russian,
French, and Italian as target, low-resource languages.  A
lexicon-based baseline and three sets of benchmark ML
methods were identified from extant literature: (1) mono-
lingual models, (2) MT-based, and (3) CLKT alternatives. 
The baseline used only non-English labeled training data and
was based on searching hacker asset indicators from a crafted
lexicon within a given text.  The lexicon compilation process
is detailed in our code repository.  Monolingual models were
trained only on non-English data without any translation to
English or transfer of knowledge between languages.  Two
families of monolingual models were examined: (1) tradi-
tional ML models, including SVM, random forest, and naïve
Bayes, and (2) monolingual deep learning models.  Three
deep learning models commonly used in past text classifi-
cation literature were selected for evaluation: BiLSTM
(Goldberg, 2017), bidirectional gated recurrent unit (BiGRU)
(Johnson & Zhang, 2016), and convolutional neural network
(CNN) (Deliu et al., 2017).  MT-based approaches are hacker
asset detection methods that rely on Google Translate (Li et
al., 2016; Samtani et al., 2017).  These models leverage both
English and non-English language labeled data for training
and include two state-of-the-art families of hacker asset detec-
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Figure 4.  Discriminator and Generator Loss During ADREL’s Training for Russian, French, and Italian

tion methods:  (1) traditional ML approaches, including naïve
Bayes (Samtani et al., 2017), SVM (Deliu et al., 2017), and
random forest (Portnoff, 2018), and (2) deep learning
methods, including BiLSTM, BiGRU (Grisham et al., 2017)
and CNN (Deliu et al., 2017).  CLKT alternatives are con-
cerned with how including both English and untranslated non-
English text as input affects classification performance.  Two
recent CLKT models were selected:  fully multi-language
CNN (FML-CNN) and multi-task learning BiLSTM (MTL-
BiLSTM and MTL-BiGRU).  FML-CNN combines all
English and non-English content into a bag-of-words and
inputs it into a three-layer CNN (Deriu et al., 2017).  MTL-
BiLSTM and MTL-BiGRU utilize multi-task learning to
create a shared representation from separate inputs simul-
taneously (Ebrahimi et al., 2018).  We summarize the training
data for each benchmark method category in Table 2.

Evaluation Metrics.  Consistent with the past security ana-
lytics studies, we used three well-established performance
metrics to evaluate the performance of all detection methods:
accuracy, F1-score, and area under the ROC curve (AUC)
(Deliu et al., 2017; Li et al., 2016).  Due to the class imbal-
ance, accuracy alone is not a reliable measure to truly reflect
the hacker asset detection performance (Wheelus et al., 2018). 
It is often recommended to use the F1-score, which is the
harmonic mean of precision and recall (Li et al., 2016).  AUC
is the most effective measure for class-imbalanced data
(Wheelus et al., 2018), which establishes a trade-off between
Type I and Type II errors.  To help ensure model generali-
zability, we employed five-fold cross-validation in all

experiments, and further assessed the statistical significance
of the results by paired t-test (Li et al., 2016).  The baseline
lexicon search does not output probabilities; therefore, AUC
is not applicable.  The evaluation results for hacker forums
and DNMs are summarized in Table 3.  The highest scores are
highlighted in boldface.  As shown in Table 3, CLHAD out-
performed all benchmark methods for both Russian and
French in terms of accuracy, F1-score, and AUC with statis-
tically significant margins.  Within Russian hacker forums,
CLHAD resulted in almost 12% improvement in AUC
compared to the second-best performing benchmark method
(i.e., 82.33% vs. 70.18% from FML-CNN).  Similarly, in
French hacker forums, ADREL improved the AUC by
approximately 14% (i.e., 85.80% vs. 71.47% from MTL-
BiLSTM).  Similar results were observed in Russian, French,
and Italian DNMs.  Results on Italian DNMs are presented  in
Appendix A.  Higher performance in DNMs could be attri-
buted to less generic and more explicit language that is used
in product descriptions to maximize profit.

From Table 3, CLHAD’s strong performance could be attri-
buted to three factors.  First, observing that MT-based
methods do not necessarily perform better than monolingual
models suggests that mistranslations can negatively affect
hacker asset detection performance.  Second, CLHAD’s
strong performance over deep learning monolingual models
indicates that generating language-specific representations is
insufficient for CLKT purposes.  However, transferring salient
features from English enhances overall hacker asset detection
performance.  Third, CLHAD’s improved performance over
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Table 2.  Training Data for Each Category of Benchmark Method

Benchmark Method Category Training Data Language Training Data Language Category

Baseline (Lexicon-based) • Only Russian
• Only French
• Only Italian

Low-resource non-English

Monolingual

Machine Translation (MT)-based • English + Russian
• English + French
• English + Italian

English (source) + Low resource non-
English (target)CLKT alternatives

CLHAD (Proposed Method)

Table 3.  Benchmark Evaluation Results in Hacker Forums and DNMs for Russian and French

Hacker Forums DNMs

Method Category Method Acc (%) F1 (%) AUC (%) Acc (%) F1 (%) AUC (%)

Baseline Lexicon
Search

Ru 70.00** 53.06*** N/A 72.61*** 53.33*** N/A

Fr 72.50* 59.26* N/A 61.43*** 58.34** N/A

Monolingual NB Ru 62.82*** 62.31*** 63.07** 95.00* 88.94* 90.95**

Fr 66.47** 37.68*** 60.38*** 72.86* 60.36** 71.83*

SVM Ru 68.60** 39.17** 62.83*** 94.17* 91.97* 94.02**

Fr 69.30** 32.66*** 60.55*** 69.05* 51.85* 66.25**

RF Ru 67.39** 37.21*** 59.74*** 93.41** 90.73** 92.34*

Fr 70.23** 31.29*** 58.40*** 68.85* 42.70*** 60.18***

BiGRU Ru 73.59* 57.12** 69.21** 95.37* 92.81* 96.85*

Fr 73.08* 54.92*** 69.40** 72.86* 52.72** 75.72*

BiLSTM Ru 69.43* 57.75* 68.25* 93.45* 89.41* 96.90*

Fr 74.92* 61.69** 73.54* 66.19** 45.66** 71.88*

CNN Ru 68.92* 55.40** 63.75** 93.92* 91.98* 96.31*

Fr 70.29* 55.74*** 73.21* 68.57* 57.07* 70.27**

MT-Based NB+MT Ru 62.29*** 35.42** 56.32*** 95.27*** 92.31* 94.16**

Fr 61.93*** 65.57* 62.64*** 81.66* 65.78*** 76.07***

SVM+MT Ru 64.37*** 52.45*** 62.32*** 74.00*** 62.62** 79.09*

Fr 62.28*** 55.85*** 61.98*** 68.33* 38.00** 63.78**

RF+MT Ru 64.65** 53.62** 63.79*** 83.00* 63.34* 74.39**

Fr 67.02** 60.82* 66.67** 76.06* 63.61* 74.08*

BiGRU+MT Ru 61.60*** 63.05* 65.51*** 96.31* 91.98* 96.69***

Fr 61.23*** 66.83* 63.52*** 77.49* 62.19** 79.77*

BiLSTM+MT Ru 63.57** 63.48* 66.32*** 93.98*** 88.88*** 98.02*

Fr 66.31*** 67.28* 68.29*** 73.44* 64.15** 78.96*

CNN+MT Ru 62.91** 57.03* 63.87** 89.09** 93.12* 94.11**

Fr 63.33*** 66.53* 69.05*** 66.88** 67.70** 74.39**

CLKT
Alternatives

FML-CNN Ru 66.11* 58.97** 70.18** 94.36** 91.05** 96.98**

Fr 75.20* 56.82*** 61.27*** 68.09* 57.07** 70.31**

MTL-BiGRU Ru 64.07* 59.12* 67.25** 94.54* 91.59* 96.05*

Fr 70.77** 59.54** 68.84*** 74.76* 65.68* 77.86*

MTL-
BiLSTM

Ru 69.81* 57.28*** 69.98*** 95.42** 91.41** 95.58*

Fr 74.31* 61.30** 71.47** 67.14* 59.68* 71.56*

CLHAD (Proposed Method) Ru 79.09 70.16 82.33 97.10 95.65 98.90

Fr 82.48 74.55 85.80 86.73 76.85 86.32

Note:  BiGRU:  Bidirectional Gated Recurrent Unit; FML-CNN:  Fully MultiLingual CNN; MTL-GRU/BiLSTM:  Multi-Task Learning GRU/BiLSTM;

RF:  Random Forest (p-values are significant at 0.05:*, 0.01:**, 0.001:***).
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prevailing CLKT methods (e.g., FML-CNN, MTL-BiLSTM)
indicates that ADREL’s adversarial training process leads to
language-invariant representations that cannot be attained
with simple bag-of-words approaches (e.g., in FML-CNN) or
multi-task learning (MTL-BiLSTM).  Overall, the consistency
of the results shows CLHAD’s generalizability across multiple
dark web languages.  Appendix B further demonstrates
CLHAD’s generalizability to new languages via empirical
analysis of the training size.  This empirical analysis shows
that knowledge transfer within the same language family (e.g.,
English and French) requires less training data than languages
from different language families (e.g., English and Russian).

Explanation and Detected Hacker
Assets Profiling

In addition to the confidence score from CLHAD’s output,
model explainability is essential for analysts to understand
why CLHAD yields specific outputs.  Hence, we incorporated
a well-established model-agnostic explainability mechanism
that further explains CLHAD’s output.  We then examined the
output to obtain a hacker asset profile for each language.

Results Explanation

Consistent with text representation learning literature, we
adopted a well-established method called Shapley Additive
exPlanations (SHAP) (Lundberg & Lee, 2017).  SHAP em-
ploys cooperative game theory to quantify the contribution of
each word (known as Shapley value) to the final decision
made by CLHAD.  Three representative samples of hacker
assets detected by CLHAD are presented in Table 4.  The
examples show a spyware program for accessing victims’
wallets and social media accounts (Russian), a database injec-
tion tool on Windows to recover user logs (French), and a
MAC address spoofing tool (Italian).  The output explanation
column shows the top five contributing words to CLHAD’s
decision, based on the coefficients of logistic regression. 
Translations of these words are given in parentheses and are
highlighted in the original text based on their contribution
(darker color denotes higher contribution).

Words such as “victim,” “spy,” “user,” and “data” contribute
to the detection of the Russian spyware as a hacker asset. 
Similarly, the appearance of words such as “logs” and “inject”
in the French database injection tool and words such as
“MAC,” “address,” and “spoof” in the Italian MAC address
spoofing tool contribute to detection of these hacker assets by
CLHAD.  At this stage, a simple lexicon translation can be
effectively used by a non-native analyst to assess the results. 
The incorporated explainability mechanism provides a useful
tool to analyze CLHAD’s output.

Detected Hacker Assets Profiling

CLHAD’s results are also useful to profile hacker assets in
non-English platforms.  We further examined the hacker
assets discovered by CLHAD in our gold-standard dataset via
lexicon search to create four groups of assets: hacking tools,
hacking services (e.g., DDoS, targeted spying), hacking
tutorials, and financial fraud tools (e.g., credit card cloning
software).  Figure 5 presents the resulting hacker asset profile
for dark web platforms by language.  The horizontal axis
shows the percentage of detected hacker assets in each
category.

Three important observations are made from the hacker asset
profile shown in Figure 5.  First, while all platforms almost
equally concentrate on financial fraud as a lucrative business
(diamond pattern), English and Russian platforms are mostly
focused on hacking tools (horizontal stripes).  Second,
Russian platforms are different from others in that they
heavily focus on hacking services (vertical stripes).  An
example of hacking services is shown below:

“Âçëîì àêêàóíòà Skype.  Ñîîáùàåòå àäðåñ
àêêàóíòà, êîòîðûé íóæíî âçëîìàòü è îïëà÷èâàåòå
ñäåëêó …” (translation: “Hacking Skype account. 
Provide the address of the account you want to hack
and pay for the deal ...”).

These services often require sophisticated hacking skills and
sometimes are indicators of insiders’ illegal access to pro-
prietary datasets.  Hacking services are not common in
English, French, or Italian platforms.  This could indicate the
concentration of advanced organized hackers in Russia. 
Finally, while French and Italian platforms highly focus on
hacking tutorials, Russian platforms are less focused on
tutorials.  This may also signify a higher level of hacking
skills in Russian platforms as opposed to French and Italian
platforms, which may serve lower-skilled hackers or script-
kiddies.

Discussion: Contributions to
the IS Knowledge Base and
Managerial Implications

Guided by the computational design science paradigm, we
targeted an emergent cybersecurity application and exten-
sively explored and evaluated viable solutions to design a
novel IT artifact suitable for our research inquiry of interest. 
As a result, several key contributions were made to the IS
knowledge base that can help guide future research.  We
discuss these contributions and their related managerial impli-
cations in the following subsections.
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Table 4.  Explanation of Examples Identified by CHLAD

Original Content Output Explanation

Figure 5.  Hacker Asset Profile for Dark Web Platform by Language
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Contributions to the IS Knowledge Base

Our study contributes two novel design principles (Gregor &
Hevner, 2013) to the IS knowledge base: (1) leveraging mul-
tiple languages simultaneously to create comprehensive text
representations for downstream text analysis tasks and
(2) transferring the expert knowledge (i.e., human-labeled
data) to new domains via domain-invariant representations. 
These design principles can facilitate novel research inquiries
within cybersecurity and social media analytics.  Within
cybersecurity analytics, design principles 1 and 2 offer a more
effective mechanism than traditional text processing methods
to process unstructured dark web content.  Both design prin-
ciples can also facilitate other cybersecurity analytics tasks,
such as identifying key hackers and cybercriminal com-
munities in non-English platforms.  Within social media
analytics, these design principles can offer language-invariant
text representations for content moderation in foreign-
language social media platforms.  They are also applicable to
community question answering (CQA) platforms that aim to
harness the collective intelligence of numerous geopolitical
regions by allowing the questions and answers to be written in
non-English languages by participants globally.

Managerial Implications for
Cybersecurity Analytics

CLHAD findings benefit cybersecurity managers at opera-
tional and strategic levels.  Within operational security
management, we believe two findings from CLHAD could
benefit information security officers (ISOs) and practitioners
in cybersecurity analytics organizations.  First, discovering
that Russian cybercriminals are more likely to be equipped
with sophisticated hacking skills can provide insights into
cyber attack attribution (a crucial task in incident response). 
Accordingly, practitioners of cybersecurity analytics organiza-
tions and ISOs in security operation centers (SOCs) can
consider automated hacker asset profiling to support attack
attribution efforts.  For example, they can initially focus on
certain geopolitical regions that are more likely to be attri-
buted to advanced nation-state cyber attacks before con-
ducting expensive fully-fledged investigations around the
globe.  Second, discovering that cybercriminals in Russian,
French, Italian, and English dark web platforms almost
equally concentrate on financial fraud as a lucrative business,
suggests that cybersecurity analytics organizations that protect
financial firms need to monitor non-English platforms in
addition to only English platforms.  As such, automated multi-
lingual hacker asset detection helps prioritize hacker assets
based on the security needs of firms and the global cyber-
security landscape.  Juxtaposing these findings shows that
while security managers may benefit more from focusing on

Russian platforms in identifying sophisticated hacking assets,
identifying financial hacker assets requires attending to other
languages in the dark web as well.  

Within strategic security management, CLHAD findings could
benefit information systems security managers (ISSMs) and
chief information security officers (CISOs) in two areas. 
First, given that dark web content varies in each geopolitical
region and language domain, profiling hacker assets in foreign
platforms is useful to improve quarterly and/or annual cyber-
security reports.  Such reports have a crucial role in informing
resource allocation for mitigation strategies and more effec-
tive cybersecurity investments.  Second, given that hiring
cybersecurity experts who are also native speakers in all dark
web foreign languages is expensive and inefficient, the
analytics from CLHAD can help identify and tailor the need
for hiring analysts with specific language proficiencies in
security firms.  For instance, based on our findings, a large
security firm focusing on nation-state hacker assets can
benefit from employing analysts with Russian language
proficiency.  Analysts with such language proficiency could
also benefit from the explanations obtained from CLHAD’s
automated detection and hacker asset profiling.

Conclusion and Future Directions

Detecting hacker assets in massive volumes of dark web con-
tent is crucial to gain reconnaissance on adversaries’ arsenals. 
Manual hacker asset detection is ad hoc, labor-intensive,
costly, not scalable, and time-consuming.  There has been a
significant push in cybersecurity analytics to develop auto-
mated ML-based approaches.  However, ML approaches often
require analysts to provide labeled data during the model
training phase.  While providing human-labeled data is more
feasible for English content, non-English dark web platforms
suffer from a lack of labeled data due to the unfamiliarity of
the analysts with foreign languages or issues with MT in the
cybersecurity domain.  The rapid rise of nation-specific dark
web platforms calls for novel multilingual cybersecurity ana-
lytics.  In this study, we adopted the computational design
science paradigm to develop a novel security analytics
framework (CLHAD) that enables the explainable detection
of hacker assets in non-English dark web platforms using deep
cross-lingual knowledge transfer.  Our approach employs a
novel adversarial learning procedure to capture the language-
invariant representations from English and foreign platforms
and automatically detect hacker assets in non-English
platforms.  Through rigorous benchmark evaluations on Rus-
sian, French, and Italian hacker forums and dark net markets,
we demonstrated that our method significantly improves
hacker asset detection across multiple foreign languages. 
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Future research can build upon CLHAD by integrating its
results into social network analysis to identify key hacker
communities, inform resource allocation, and help reduce the
overall cost of global cyber-crime.
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Appendix A

Benchmark Evaluation of (CLHAD) on Italian DNMs

We present the performance of CLHAD against baseline, monolingual, MT-based, and CLKT methods on Italian dark web platforms in Table
A1.  The highest performance is shown in bold-face.

Table A1.  Benchmark Evaluation Results in Italian DNMs

Method Category Method Accuracy F1-score AUC

Baseline Lexicon Search 72.64** 61.45*** N/A

Monolingual NB 71.03*** 59.44*** 73.07***

SVM 78.90* 69.17* 78.30**

RF 79.29* 69.87* 80.28**

BiGRU 81.75* 69.75* 84.12**

BiLSTM 80.83* 69.11* 84.71*

CNN 81.75* 67.78* 85.16**

MT-Based NB+MT 66.15** 49.30* 64.23**

SVM+MT 79.77* 54.15*** 67.44***

RF+MT 71.51** 41.11** 62.47***

BiGRU+MT 85.34** 72.23*** 87.94**

BiLSTM+MT 84.27** 71.92*** 87.44**

CNN+MT 73.49*** 73.02* 79.53*

CLKT Alternatives FML-CNN 81.75* 67.78* 85.88**

MTL-BiGRU 83.44* 72.39* 85.98**

MTL-BiLSTM 82.75* 71.35* 85.76*

CLHAD (Proposed Method) 88.16 79.59 91.68

CLHAD outperformed the benchmark methods in AUC, F1-score, and accuracy with statistically significant margins.  Compared to the second-
best methods for each metric, CLHAD improved hacker asset detection in Italian platforms by almost 7% in F1-score (vs. MTL-BiGRU in CLKT
category), and by 4% in AUC (vs.  BiGRU+MT in MT-based category).
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Appendix B

Empirical Analysis of the Training Size in Target Languages

To empirically examine the size of training set needed for knowledge transfer to the target language, we started with 20% of the original training
size and gradually increased the size of our training set.  We measured the performance of the proposed method at each step.  Figure B1 depicts
the results for all performance measures while varying different training sizes (0.2 denotes an 80% reduction in the training size, and 1 denotes
the original training size).  As shown in Figure B1, to achieve an AUC above 80%, the model needs to be trained on at least 1,817 Russian and
570 French documents.  For Italian, this requirement is even lower (261 documents to achieve 80% AUC).  The minimum AUC is shown by
an arrow.  The corresponding minimum training size is shown by a dashed line.

Figure B1.  Empirical Analysis of the Training Size in Target Languages

The empirical results could suggest that since French and Italian are more similar to English (both are close descendants of the Indoeuropean
family) than Russian, their minimum required size of training data is far less than that of Russian (descended from the Slavic family).  Given
the minimum required number of training documents in French and Italian, it is expected that achieving similar performance in a new language
with similar characteristics to English (i.e., the source language) would need no more than several hundred labeled training documents. 
However, learning a new target language that is farther from the English family (e.g., Russian) would need a larger training set of one or two
thousand documents.  The empirical results align with the intuition that knowledge transfer from English to similar target languages (from the
same family) requires less training data than languages that are from different language families.
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