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Abstract—In finance, it is believed that market information, namely, fundamentals and news information, affects stock movements.
Such media-aware stock movements essentially comprise a multimodal problem. Two unique challenges arise in processing these
multimodal data. First, information from one data mode will interact with information from other data modes. A common strategy is to
concatenate various data modes into one compound vector; however, this strategy ignores the interactions among different modes.
The second challenge is the heterogeneity of the data in terms of sampling time. Specifically, fundamental data consist of continuous
values sampled at fixed time intervals, whereas news information emerges randomly. This heterogeneity can cause valuable information
to be partially missing or can distort the feature spaces. In addition, the study of media-aware stock movements in previous work has
focused on the one-to-one problem, in which it is assumed that news affects only the performance of the stocks mentioned in the reports.
However, news articles also impact related stocks and cause stock co-movements. In this article, we propose a tensor-based event-
driven LSTM model to address these challenges. Experiments performed on the China securities market demonstrate the superiority of
the proposed approach over state-of-the-art algorithms, including AZFinText, eMAQT, and TeSIA.

Index Terms—Stock Prediction, Tensor, Multimodality, Deep Learning, LSTM.
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1 INTRODUCTION

A Company’s stock price reflects investor perception of
its ability to earn and grow profits in the future. The

traditional efficient market hypothesis (EMH) states that
the price of a stock is always driven by ’unemotional’
investors [1, 2]. New information related to markets will
change investors’ expectations about the markets and cause
stock prices to move [3]. On the other hand, in behavioral
finance studies, stock movements are attributed to investors’
cognitive and emotional biases [4]. Although the two theo-
ries are based on different views regarding how information
shapes stock movements, both agree that the volatility of
stock markets stems from the release, dissemination and
absorption of information [5].

In previous studies, scholars have found that stock
movements are affected by various sources of informa-
tion, including transaction data, news, social media, and
search behavior [6, 7, 8]. Some researchers have taken
a further step by examining the joint effects of various
types of information, which has proven helpful in captur-
ing stock movements [9, 10, 11]. Essentially, stock markets
are affected by multiple information sources, which can
be roughly categorized into two subgroups: fundamentals
(e.g., turnover, opening prices, and trading volumes) and
financial news [12]. Thus, the problem of modeling stock
movements is essentially a multimodal learning problem.

The first challenge lies in identifying the joint effects of
fundamental data and news information on stock markets.
The traditional strategy is to concatenate these information
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into a compound vector and utilize various learning models,
including support vector machines (SVMs), decision trees
(DTs), and artificial neural networks (ANNs), to make pre-
dictions [13, 14, 15]. However, such vector-based models
may ignore the inherent links among multiple sources of
information and thus fail to capture their interconnections.
To overcome this challenge, some scholars have modeled
multidimensional information with tensors to achieve better
performance [16, 17].

Another important issue facing multimodal models is
the heterogeneity of the sampling times among different
modes. For stock markets in particular, the fundamental
data are characterized by continuous values sampled at
equal time intervals (i.e., one day). By contrast, news infor-
mation consists of discrete values sampled at nonequal time
intervals because of the randomness of the occurrence of
news events. A good example is presented in Figure 1. This
figure shows news articles about stock ”000001” published
between January 1, 2015, and April 1, 2015. The occurrence
of these news events is irregularly distributed, with varying
intervals ranging from days to weeks or even months,
while the fundamental information is represented by daily
continuous data. The problem of how to fuse these two
types of data for solving a supervised learning problem has
yet to be explored.

Fig. 1: An example of news events between Jan 1, 2015, and
April 1, 2015, with varying time intervals.
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In previous studies, this problem has typically been
solved by using only a portion of the available data; that
is, only data sampled at the times of news events are
retained for further analysis. For instance, Schumaker and
Chen utilized transaction data within 20 minutes following
the release of breaking news to study media-aware stock
movements [18]. There were two data dimensions in this
study: the continuous transaction data and the discrete
news article data. Only part of the transaction data, i.e., the
data that coincided with news publications, were utilized,
while other transaction records without corresponding news
reports were discarded. One alternative solution is to obtain
a sparse feature space by filling the missing values in the
news mode with Null. However, such sparsity in the news
dimension will distort the entire feature space.

In addition, previous studies on media-aware stock
movements have focused on only the one-to-one problem,
in which news articles about a company are assumed to
affect only that company, without considering the indirect
effects on related companies. However, the fluctuation of
one company is also affected by its related companies. For
instance, a news report on the alternative energy supply on
November 14th, 2017, applied downward pressure on the
PetroChina (601857) stock, resulting in a decrease of 1.35%.
By contrast, due to its savings on transportation costs, Air
China (601111) saw its stock increase by 15.35%. Incorporat-
ing such correlations among relevant companies to quantify
media-aware stock movements is of great interest.

To address the above challenges, we propose a multi-
modal event-driven long short-term memory (LSTM) model
with several unique contributions, as follows.

• We first represent the complicated market informa-
tion space with tensors to preserve the interconnec-
tions among different information modalities.

• We then propose an event-driven LSTM model to
address the heterogeneity of the sampling times in
different modes. This is achieved by controlling the
memory in the neural network so as to fuse the
continuous data sampled at equal intervals (funda-
mental data) with the discrete values sampled at
nonequal intervals (news).

• We also consider the indirect influence of related
companies on media-aware stock movements by
constructing a media-based enterprise network to
reshape the market information space represented by
tensors.

• Experiments performed on one full year of data on
the China securities market demonstrate the supe-
riority of the proposed approach over state-of-the-
art algorithms, including AZFinText, eMAQT, and
TeSIA. Relative to these algorithms, the proposed
approach achieves a performance improvement of at
least 22.8%.

2 RELATED WORK

In this section, we review the relevant literature from
three perspectives: the influence of information on stock
volatility, stock comovements and the approaches for quan-
tifying such media-aware movements.

2.1 Information and Stock Volatility

The price of a stock reflects investors’ expectations regard-
ing a company’s future cash flows. Investors may change
their expectations as they receive new information, result-
ing in stock fluctuations. Stock market information can
be roughly categorized into three subgroups: fundamental
data, media information and a combination of the two [12].

• Fundamental information: A number of studies in
traditional finance have examined the effects of fun-
damental information. Haugen and Baker showed
that cash flows can provide additional information
content for better understanding stock markets [22].
Fama and French found that a stock’s performance is
determined mainly by three risk factors: the overall
market, the firm size, and the book-to-market equity
ratio (BE/ME) [23]. Jegadeesh and Titman observed
that stocks with higher returns in the previous 12
months tended to have higher future returns [24].

• Media information: The pilot research on media-
aware stock movements can be traced back to work
on the influence of financial reports on stocks [25].
Later, researchers observed the influence of online
media on stock fluctuations [15, 21]. In particular,
investors’ decisions can be influenced by the opin-
ions of others as expressed via online media, which
may result in herd behavior in investment. For exam-
ple, Schumaker and Chen experimented with several
textual news representation approaches to study the
effects of breaking news on stock movements [10].
Bollen, Mao and Zeng found that the collective mood
states derived from 10 million tweets were correlated
with the index of the Dow Jones Industrial Average
(DJIA) using a self-organizing fuzzy neural network
(SOFNN) model [14]. These works have prompted
the birth of media-aware hedge funds, including
Derwent Capital Markets, DCM Capital and Cayman
Atlantic.

• Combination: Many studies have shown that both
fundamental and media information can shape stock
movements. However, difficulties arise in modeling
these two types of information [26, 27]. One common
strategy is to concatenate these information into a
compound vector, thus treating each value as an in-
dependent variable. For example, Tetlock measured
the positive (negative) sentiment polarity of an article
and applied a linear regression model to capture
stock returns [12]. Mittermayer and Knolmayer rep-
resented market information spaces with vectors and
applied SVM and KNN models to study the impacts
of news on stock markets [15]. However, such vector-
based methods dilute or even ignore the intrinsic
associations among various information sources. Al-
ternatively, researchers have found that tensor rep-
resentations are able to capture the interconnections
among various modes of market information, thus
providing a better understanding of stock move-
ments. Li et al. was the first to apply tensor theory
to model the complicated market information space
and show that such a representation is able to capture
the joint effects of different information sources [16].
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TABLE 1: Representative research on the influence exerted by news articles on stock markets.

Category Reference Model
Focus Experiment

Information
source

Scale Response Predictor Period

Statistical models
and regression
models

[7] Statistical model Wikipedia Week Index Number of page
views

12/10/2007-04/30/2012

[8] Mutual information Twitter Hour Price Message volume 11/12/2012-12/03/2013

[12] Linear model DJNS, WSJ Day Return Number of emotion
words

1980-2004

Classical
ML-based models

[15] KNN, SVM PR Newswire Minute Stock trend News content 12/06/1997-03/06/1997

[19] KNN Yahoo Day Index News content 04/01/2002-12/31/2002

Deep learning
models

[20] Neural network Reuters,
Bloomberg

Week Return, volatility Sentiment 01/2003-02/2014

[21] LSTM Microblogs Hour Stock trend Social media content 2015

A tensor representation provides a promising solution
for retaining the interactions among different information
modes for multimodal learning problems. However, the
previous work [16] relied on a framework based on support
tensor regression, which requires iterative estimation of the
parameters for each mode until the objective function con-
verges. Such iterative calculations are time consuming and
constitute a bottleneck for the parallelization of processing.
Moreover, most machine learning algorithms can utilize
only vectorized input features. It is quite challenging to
apply a tensor representation in combination with machine
learning approaches, especially deep learning networks.

2.2 Stock Comovements
As discussed in regard to the above examples of PetroChina
and Air China, it is of great interest to consider the influence
of related companies on stock movements. The challenge
here lies in how to identify related companies. Related to
this challenge is the work on stock comovements.

There are two mainstream methods of studying stock co-
movements: from the perspective of fundamentals and from
the perspective of investor behavior. Traditional financial
researchers have attributed stock comovments to the fun-
damental characteristics of the listed companies [28, 29, 30].
For instance, Pindyck and Rotemberg discovered that com-
pany size and the degree of institutional ownership influ-
ence stock comovements [28]. Preis et al. reported that stock
correlations are reflected by normalized DJIA index returns
on various time scales [29]. Aghabozorgi and Teh attributed
stock comovements to historical transaction prices [30]. In
contrast, in modern behavioral finance, it is believed that
irrational behaviors of investors cause the comovements
of related stocks. For example, Rashes found a highly ab-
normal positive correlation between two companies with
similar names but nothing else in common, caused by the
irrational feelings of investors [31].

With the advancement of the Web 2.0 era, the influence of
online information on stocks has become salient [9]. The in-
fluence of online media involves two aspects: fundamentals
and emotions. Web media enrich investors’ knowledge by
conveying a more comprehensive view of a firm’s financial
standing. In addition, Web media provide a platform for
expressing the options of experts and the public moods
of investors, which inevitably affect investor behavior and

can even elicit herd behavior [9]. Essentially, Web media
act as a sort of mirror reflecting the fundamentals of listed
companies and affecting investor behavior to some degree.
In this study, we build an innovative media-based enterprise
network to identify related companies in terms of their
media performance.

2.3 Stock Analysis Models

Once fundamental data and news information have been
obtained in a machine-friendly form, various types of analy-
sis models can be applied to study media-aware stock move-
ments. There are three mainstream classes of such models:
statistical models (originating from statistics), regression
models (originating from econometrics) and machine learn-
ing models (originating from computer science). Table 1
summarizes the related work in terms of these classes of
models.

Statistical models emphasize the correlations between a
single feature and stock markets [7, 8]. For example, Moat
et al. applied the Wilcoxon test to identify the linkage
between a company’s browsing frequency on Wikipedia
and its stock fluctuations. Econometric models focus on the
causal relationships between specific features and market
movements [12, 32, 33]. For example, Huang et al. applied
logistic regression models and found that abnormal opti-
mism in a company’s earnings report exerted a drag on
its stock performance [34]. However, both statistical models
and econometric models often have difficulty preserving the
interconnections among multiple data sources and thus fail
to capture their joint effects on stock performance. Thus,
computer scientists have taken the further step of utilizing
machine learning algorithms to capture such complex non-
linear relationships.

The problem of modeling media-aware stock move-
ments is essentially a binary classification problem. Given
the ability to take high-dimensional data as input, many
machine learning algorithms, including SVMs, Bayesian
classifiers and DT methods, have been applied to solve this
problem [13, 15, 35]. For example, early research can be
traced back to the work of Wuthrich et al., who forecast the
daily trends of five major stock market indexes using a neu-
ral network and the KNN algorithm [19]. Later, Schumaker
and Chen estimated a discrete stock price 20 minutes after
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Fig. 2: System framework.

the release of a related news article using support vector
regression (SVR) [18].

With the great success of deep learning in various fields,
including text processing [36], image recognition [37], and
speech recognition [38], some researchers have begun to
explore the power of deep learning for capturing media-
aware stock movements [39]. For example, Ding et al. pro-
posed a deep learning method to model both the short-
term and long-term influences on stock price movements
and found that the performance of a deep neural network
(DNN) was better than that of an SVM [39]. Huang et al.
applied a convolutional neural network (CNN) to explore
the impact of public sentiment, as extracted from tweets, on
stock markets [40]. Inspired by the application of recurrent
neural networks (RNNs) to time-series problems, LSTM
models have been widely applied to study media-aware
stock movements [21, 41]. However, these approaches sim-
plify the market information space by adopting a vector rep-
resentation, which ignores the interconnections among dif-
ferent information modes. In addition, the standard LSTM
technique fails to address the heterogeneity of the sampling
times among different market information modes. In this
article, we model the market information with tensors and
apply an event-driven mechanism to capture the intercon-
nections and balance the heterogeneity of the sampling
times between the different information modes [16].

3 MODEL ARCHITECTURE

Stock markets are influenced by various information
sources, including fundamental data and media informa-
tion. A common strategy in previous studies has been
to concatenate information from these heterogeneous data
sources into a compound vector. However, these vector-
based models treat different information sources as indepen-
dent features, ignoring the inherent links between them and
thus failing to properly capture stock movements [16]. In
addition, fundamental data are continuous values sampled
at equal time intervals, whereas media information emerges
randomly. This heterogeneity results in valuable informa-
tion being partially missing. Therefore, we use tensors to
represent market information to preserve the multifaceted
and interrelated nature of the data. On this basis, a multi-
modal event-driven LSTM model is proposed to capture the
nonlinear relations between market information and stock
movements. Figure 2 shows an overview of the proposed
approach.

3.1 Tensor Representation
A tensor is a mathematical representation of a multidimen-
sional array. Specifically, an N -way or N th-order tensor is
an element of the tensor product of N vector spaces, each
of which has its own coordinate system. Essentially, a first-
order tensor is a vector, a second-order tensor is a matrix,
and tensors of order three or higher are called higher-order
tensors. Figure 3 illustrates an example of a second-order
tensor sequence for one stock. Additional details on tensor
algebra can be found in [42].

Fig. 3: Market information represented by a second-order
tensor sequence. The tensor representation is used to rein-
force the intrinsic links among multiple information sources.

In this study, stock market information is categorized
into two subgroups, namely, fundamental data and media
information, as described below.

Fundamental data: The price of a stock is a reflection
of a firm’s intrinsic value. Eight firm attributes are selected
to capture the future business value of a firm, and each
attribute has been shown to have some degree of predictive
value [23, 43]. These attributes are the following: highest
price, lowest price, opening price, closing price, turnover,
trading volume, P/B and P/E ratio. More detailed expla-
nation can be found in Table 2.

TABLE 2: Definition of the stock attributes.

Predictor Explanations

Opening/
Closing price

The first (final) price at which a security is traded on
a given trading day.

Highest/
Lowest price

The highest (lowest) price at which a security is traded
on a given trading day.

Volume of
trade

The total quantity of shares or contracts traded for a
specific security.

Turnover Turnover calculates how quickly a firm collects cash
from accounts receivable or how fast the firm sells its
inventory.

P/E ratio Price-Earnings Ratio is for valuing a company that
measures its current share price relative to its per-
share earnings. It can be calculated as: Market Value
per Share / Earning per Share.

P/B ratio Price-to-Book Ratio is used to compare a stock’s mar-
ket value to its book value. It can be calculated as:
Market Price per Share/Book Value per Share.

Media data: In modern behavioral finance, it is believed
that investors are irrational, tending to be influenced by ex-
perts’ opinions as expressed in the media. To capture media
sentiment, we extract the following characteristics: positive
media sentiment (P+

t ), negative media sentiment (P−
t ) and

media sentiment divergence (Dt). These characteristics are
calculated as follows:
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Fig. 4: Illustration of tensor transformations.

P+
t =

N+
t

N+
t +N−

t

, P−
t =

N−
t

N+
t +N−

t

, Dt =
N+

t −N−
t

N+
t +N−

t

, (1)

whereN+
t

(
N−
t

)
is the sum of the frequency of each positive

(negative) sentiment word found in the media on the tth

day. Dt denotes the sentiment divergence on the tth day.
Previous studies have relied on a general emotion word
dictionary to capture media sentiment. However, 73.8%
of the negative sentiment words in this general sentiment
dictionary no longer express negative emotional meanings
in the financial field [9]. For instance, the word ”bear”
originally referred to an ursine animal but indicates poor
earnings returns in the financial domain, e.g., ”a bear stock”.
Therefore, we resort to a finance-oriented sentiment dictio-
nary created in our previous study [16].

After obtaining fundamental information and media
sentiment data, we construct a second-order tensor Xt ∈
RI1×I2 to represent the market information at time t. The
variables I1 and I2 represent the numbers of features in the
fundamental data and media data, respectively. In this way,
the interconnections among multiple sources of information
can be preserved. The significance of the elements ai1,i2 of
the tensor Xt is defined as follows:

• ai1,1, 1 < i1 ≤ I1, denotes the value of the ith1
fundamental information feature.

• a2,i2 , 1 < i2 ≤ I2, denotes the value of the ith2 media
sentiment information feature.

• All other elements are initially set to zero.

Unlike in traditional vector-based methods, this second-
order tensor is able to capture the correlations characterizing
market information in complementary subspaces.

3.2 Tensor Decomposition and Reconstruction
In this study, we introduce a unique tensor framework to
allow the intrinsic connections between two different infor-
mation sources to be identified from the geometric structure
of the tensor X . Such identification is achieved through
tensor transformations, namely, Tucker decomposition and
tensor reconstruction. Tucker decomposition is applied to
decompose the tensor X into C ×1 R1 ×2 R2 [42]. Here,

each factor matrix Rk (k = 1, 2) describes one distinct facet
of the information space of the stock market (i.e., funda-
mental information and media information), and the core
tensor C reflects the strength of the relations between these
two facets. Thus, the decomposition captures the intrinsic
associations and interactions within the tensor X .

After Tucker decomposition, the Rk are further adjusted
to preserve the stock connections based on a stock corre-
lation matrix, which is constructed on the basis of stock
comovements. The intuition here is that if two stocks are
highly correlated, then news articles about one stock are
likely to effect a similar shock to the other stock.

Figure 4 details the tensor transformation process. For
this purpose, we minimize the following Lagrangian objec-
tive function to obtain correction factors Vk (k = 1, 2) with
which to adjust the original factor matrix sequences Rik|Ni=1:

min
Vk,k=1,2

L(Vk) =
λ

2

N∑
i=1

∥∥∥Xi
t − C ×1 (V

T
1 R

i
1)×2 (V

T
2 R

i
2)
∥∥∥2

+
1

2

N∑
i=1

N∑
j=i

∥∥∥V T
1 R

i
1 − V T

1 R
j
1

∥∥∥2 si,j

+
1

2

N∑
i=1

N∑
j=i

∥∥∥V T
2 R

i
2 − V T

2 R
j
2

∥∥∥2 si,j . (2)

Here,
∥∥X − C ×1 (V T1 R)×2 (V T2 R)

∥∥2 is used as a nor-
malization constraint to avoid overfitting and to control
the adjusted tensor decomposition to be close to the real

values, whereas
∥∥∥V Tk Rik − V Tk Rjk∥∥∥2 serves to correct Rik by

Vk to minimize the differences among stocks with higher
correlations si,j . The purpose of the adjustment factor si,j
is to minimize the differences in the values of each mode
for related stocks. The method of calculating the si,j is
described in Section 3.3.

To solve this Lagrangian function L and optimize the
objective function, we apply an iterative algorithm to update
the entries in V via gradient descent [27]. The gradient for
each variable is derived as follows:
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∇v1L = λ
N∑
i=1

(C ×1 (V T1 R
i
1)×2 (V T2 R

i
2)Ri1)

+ (DR1
− SR1

)V1

∇v2L = λ
N∑
i=1

(C ×1 (V T1 R
i
1)×2 (V T2 R

i
2)Ri2)

+ (DR2 − SR2)V2.

(3)

Here, DRk
=

∑N
i=1(RikR

iT
k )di,j , where di,i are the

diagonal entries and are column sums of the correlation
matrix S(i.e., di,i =

∑N
m=1 sm,i), while SRk

is calculated as∑N
i=1

∑N
j=i(R

i
kR

iT
k )si,j . The details of the partial derivative

can be found in [16]. The iterative procedure for updat-
ing V1 and V2 is performed until the objective function
converges. Thus, the reconstructed tensor is defined as
X̃ = C ×1 (V T1 R

i
1) ×2 (V T2 R

i
2). The algorithm for the

learning process is detailed in Algorithm 1.

Algorithm 1 Iterative machine learning approach for tensor
transformation
Input: The tensor stream X , the global correlation matrix

S, and the error threshold ε .
Output: The mapped tensor stream X̃ = Ci×1 (V T1 R

i
1)×2

(V T2 R
i
2)

1: From i = 1 to N (N is the total number of stocks)
2: Decompose the tensor Xi into Ci ×1 R

i
1 ×2 R

i
2

3: End
4: Set η as the step size for gradient descent
5: While (Lossn − Lossn−1 > ε)
6: Get 5v1L, 5v2L
7: vn+1

1 = vn1 − η5v1 L
8: vn+1

2 = vn2 − η5v2 L
9: n = n+ 1

10: End while
11: From i = 1 to N
12: X̃ = C ×1 (V T1 R

i
1)×2 (V T2 R

i
2)

13: End

3.3 Stock Relatedness

Stock movements are influenced by fluctuations of related
stocks. There are two ways to define the concept of ’related’
stocks [44]. In traditional finance, related stocks are deter-
mined by their fundamental characteristics [28, 29]. From
this perspective, the correlations si,j in Equation (2) can be
calculated as follows:

si,j =
E((xi−uxi

)(yj−uyj
))

σxi
σyj

, (4)

where the xi are the fundamental features of firm i and the
yj are the fundamental features of firm j. Essentially, the si,j
are the Pearson correlation coefficients applied to calculate
the correlations between the two firms. u is the mean value,
and σ is the standard error.

In modern behavioral finance, stock comovements are
considered to be affected by the collective opinions of irra-
tional investors [31]. To some extent, financial news articles
provide summaries of both firm fundamentals and investor
opinions. In other words, news articles enrich investors’
knowledge by conveying a more comprehensive view of a
firm’s financial standing than is provided by a firm’s price
alone. The optimism and pessimism characterizing news
articles may affect the emotions of irrational investors.

In this study, we construct a media-based enterprise
network to identify the stocks related to a target firm. In
this network, each node represents a listed firm, and an
edge between two nodes represents the news co-exposure
of the two corresponding firms. Specifically, if two firms
are mentioned in the same news articles, there is a link
between them. The edge between two firms is weighted by
the total number of news articles mentioning both firms.
Note that we disregard news articles mentioning more than
five firms consecutively because such news items usually do
not convey useful information [27].

In this enterprise network, we can simply treat firms
with direct connections to the target firm i as related firms.
However, this approach ignores the transitive effect. Specif-
ically, as shown in Figure 5, a news article related to firm A
may affect firms B, C and D since they are directly linked
to firm A. Moreover, firm E could be affected as well. This
is because the influence of firm A could be passed through
firms B and C to firm E. Therefore, we take the further
step of adopting the community linkage method to bridge
relevant firms without direct linkages [45].

Fig. 5: Simple pairwise correlations and the community
linkage method.

In particular, we first calculate the relationship between
firms i and j as follows:

si,j =

∑
(Ni

⋂
Nj)∑

(Ni
⋃
Nj)

, (5)

where Ni is the sum of the correlations of Node i and Nj is
the sum of the correlations of Node j. A larger si,j indicates
a higher correlation. The final relation matrix S ∈ RN×N is
a Boolean matrix, and each of its entries si,j is defined as
follows:

si,j =

{
1 if i ≤ j and s̄i,j ≥ θ
0 otherwise (6)

where θ is a threshold. Therefore, the related firms are the
firms with an entry value of 1 with respect to the target
firm. This information is utilized in Equation (2) to bridge
and reinforce the interactions among related firms.
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Fig. 6: Illustration of the proposed event-driven long short-term memory unit and its application for analyzing stock market
information. At the tth day, it considers the event effect of the previous k days.

3.4 Multimodal Event-driven LSTM Model

A long short-term memory (LSTM) model is a variant of
a recurrent neural network (RNN) that is able to handle
long-term dependencies by means of a gate mechanism [46].
Such a model is designed to handle time sequence data col-
lected at equal intervals, such as daily transaction data [21].
However, predicting media-driven stock movements is es-
sentially a multimodal problem, in which each mode has
unique characteristics. Specifically, the information space
for stock markets consists of both fundamental information
and media information. The fundamental data are daily
transaction records sampled at equal intervals. In contrast,
the data for the media mode consist of discrete values
sampled at nonequal time intervals due to the random time
distribution of news releases. This randomness can lead
to failure of the long-term dependency mechanism of an
LSTM model [47]. Specifically, if two similar news articles
are released with a sufficiently large time gap, the LSTM
model may forget the knowledge learned from the first news
article before processing the information from the second. To
solve this problem, we propose a novel event-driven LSTM
model by extending an LSTM model to include an event-
driven memory mechanism. In addition, we adopt a tensor
representation to capture the interactions among different
modes of the multimodal data.

3.4.1 Event-driven LSTM Model
Market information takes the form of multimodal data with
a continuous fundamentals mode and a discrete news mode.
To solve the stock movements prediction problem given
data collected at nonuniformly distributed time intervals,
we propose an event-driven LSTM model, in which a
triggering strategy is applied to reinforce the event-based
information obtained in previous stages. Figure 6 shows the
details of the proposed event-driven LSTM model.

As seen in Figure 6, all market information at time t
is represented by a tensor Xt. The event information Et
is represented by a vector < e0, e1, . . . , et >, where et is
the total number of news articles at time t. There are two
information flows recording the learned knowledge in the
network. Specifically, the cell memory Ct records the event-
based knowledge learned from previous stages, and the out-

put Ht records the patterns learned from previous market
information at time t. A forget gate Ft is utilized to control
how much information should be retained or forgotten from
the cell memory Ct−1 at time t. In other words, Ft allows
information in Ct−1 that is useless with respect to Ht−1

and Xt to be discarded. An input gate It is used to control
how much current information should be absorbed into the
event knowledge flow C. In this structure, the temporary
memory C̃t stores the knowledge learned from both the
current market information Xt and the information Ht−1

from the previous stage via the mapping function in the
neural network. Therefore, Ĉt is able to capture the valuable
rules and patterns hidden in both the previous and current
time periods. C̃t, Ft, It and Ĉt are calculated as follows:

C̃t = tanh(Wc ∗Xt + Uc ∗Ht−1 + Vc ∗ Et +Bc) (7)

Ft = σ(Wf ∗Xt + Uf ∗Ht−1 + Vf ∗ Et +Bf ) (8)

It = σ(Wi ∗Xt + Ui ∗Ht−1 + Vi ∗ Et +Bi) (9)

Ĉt = ft ◦ Ct−1 + It ◦ C̃t, (10)

where {Wc, Uc, Vc} are the parameters of the temporary

cell, with Bc being the corresponding bias; {Wf , Uf , Vf}
are the parameters of the forget gate, with Bf being the
corresponding bias; {Wi, Ui, Vi} are the parameters of the
input gate, withBi being the corresponding bias; ’◦’ denotes
the Hadamard product; and ’∗’denotes the convolution
operator. The convolution operator ’∗’, which is used to
process the tensor-based market information, is explained
in Section 3.4.2.

To address events occurring at nonequal time intervals,
Et is used to control what type of market information
should be utilized on the basis of event occurrence at time t.
Thus, we obtain an event control factor rt via a nonincreas-
ing mapping function, as follows:

rt = σ(Vr ∗ Et +Br) (11)

If the market information is strongly related to current
events, rt tends to be large. In this case, more event-
related information Cr will be retained in the cell memory.
Specifically, the event-related memory Cr can be extracted

Page 7 of 19 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8

via a tanh function, and the cell memory Ct at time t is
determined by Equation (13):

Cr = tanh(Ĉt) (12)

Ct = Ĉt + (Cr ◦ rt − Cr) (13)

Finally, the cell memory Ct and the market information
Xt together are passed through the output gate Ot to obtain
the output Ht. Specifically,

Ot = σ(Wo ∗Xt + Uo ∗Ht−1 + Vo ∗ Et +Bo) (14)

Ht = Ot ◦ tanh(Ct) (15)

With this proposed architecture, we are able to address
multimodal data with heterogeneous sampling intervals,
specifically, data for which some data modes are sampled
at equal intervals and other modes are sampled at nonequal
intervals. The pseudocode for this proposed algorithm is
presented in Algorithm 2.

Algorithm 2 Event-driven long short-term memory model

Input: The training tensor stream Xi
t |Ni=1 and the associ-

ated stock trends yit|Ni=1.
Output: Trained proposed model for stock predictions.
1: For time step t = 1 to T Do
2: Obtain candidate cell state C̃t from the input at

time t and the output at time t − 1(t > 1) by
Eq. 7.

3: Process information in time t through forget gate Ft
and input gate It by Eq. 8, 9.

4: Obtain cell memory Ĉt at time t by Eq. 10.
5: Update cell memory Ĉt through the event-driven

mechanism by Eq. 11- 13 and obtain the new cell
state Ct at time t.

6: Obtain the output Ht through output gate Ot by
Eq. 14, 15.

7: End for

3.4.2 Tensor-based Convolution Operation:
In Figure 6, the market information Xt is fed into the
network along with the learned knowledge Ht−1 from the
previous stage t− 1 for further analysis at time t. However,
Xt and Ht−1 are represented by tensors, which cannot be
concatenated into a super compound vector, as is the case in
a traditional LSTM model.

To merge, multiply, and sum this knowledge and infor-
mation represented by tensors in the proposed network, as
shown in Figure 6, we apply the convolution operations
of the ConvLSTM model to process the tensors, as done
in [48]. By virtue of the advantages of local connections and
weight sharing possessed by these convolution operations,
it becomes possible to capture the interactions among dif-
ferent information sources modeled as different tensor sub-
spaces. Essentially, ConvLSTM provides the unique feature
of temporally propagating interconnections through each
ConvLSTM state. This makes it possible for us to process
time-series data represented as tensors.

The convolution operation in Equations (7) to (14) is
defined as ’∗’ and makes it possible to process tensors
instead of vectors in the proposed network. Therefore, the

interrelations among different sources of market informa-
tion Xt ∈ RI1×I2 can be captured for further analysis.

4 EXPERIMENTAL EVALUATION

To gauge the effectiveness of the proposed approach for
predicting media-aware stock movements, we conducted a
series of experiments using actual market transaction data
from January 1, 2015, to December 31, 2015. The source code
and dataset are accessible on GitHub1.

4.1 Experimental Data
In our experiments, we extended the CSI 100 stock data
provided by Li et al. [9] with additional financial news
articles crawled by our focus-topic crawler, as follows,

• Fundamental data: This dataset contains the financial
statuses of 100 companies listed on the China Secu-
rities Index (CSI 100) between January 1, 2015, and
December 31, 2015. Since the companies on the CSI
100 list are updated every six months, we selected
91 companies that remained on the list for the entire
period.

• Media data: The release of important news informa-
tion affects investors’ expectations concerning a com-
pany’s future, resulting in stock market fluctuations.
We selected 45, 021 news data points related to the
91 selected companies listed on the CSI 100 from
www.eastmoney.com, which is one of the largest
financial information websites in China.

Table 3 summarizes the descriptive statistics of the main
variables of these two data sources. From Table 3(a), it can
be observed that the variation in volume is substantial. Con-
versely, the variations in stock prices (opening price, closing
price, highest price and lowest price) are much smaller. The
standard derivations of these prices are all around 20. This
is understandable because the highest price of any stock
is 116, while volume can reach a considerable quantity of
shares (51, 354, 670). Furthermore, as indicated earlier, the
stock prices wander around a firm’s intrinsic value and thus
have relatively low volatility.

Table 3(b) shows the statistical information of our media
data set. There are 34, 656 positive and 10, 365 negative
news articles. The number of positive news articles is ap-
proximately 3.5 times the number of negative news articles.
This is consistent with the findings that news about the
stock markets tends to present positive sentiment towards a
firm [49]. The shortest positive news consists of 18 words,
while the shortest negative news is 16 words. The longest
news article reaches 20, 936 words. At the company level,
the firm with the least news coverage has only 74 news
reports, while the firm with the most public attention has
5, 703 news articles.

In our experiments, the data of the first 9 months are
utilized to train the model, and the last 3 months of data are
used for evaluation. Note that the evaluation is conducted
in a rolling window fashion. In particular, the basic model
is trained with the first 9 months of data. When evaluating
the tth day in the test period, the input data prior to the tth

1. https://github.com/Tanny16/Tensor-based-eLSTM.
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day are continuously added to update the training model,
ensuring the latest market information is included.

TABLE 3: Descriptive statistics of features.

(a) Descriptive statistics of fundamental data

Variables Min Mean Max Std 25% 75%

Opening price 2.200 26.602 110.710 20.479 12.410 32.400
Closing price 2.220 26.633 112.300 20.517 12.438 32.450
Highest price 2.290 27.118 116.000 20.887 12.715 32.990
Lowest price 2.200 26.150 110.710 20.134 12.150 31.818

Turnover 0.009 1.685 62.248 2.413 0.439 1.916
Volume 1,018 948,717 51,354,670 2,177,324 138,306 871,434

P/B ratio 0.817 3.367 14.889 1.911 1.920 4.420
P/E ratio 6.642 40.428 477.466 61.221 12.113 36.977

(b) Descriptive statistics of media data

Category Nn
News Length Company News Count

Min Avg Max Low Avg Top

News
P 34,656 18 1,201 20,936 63 1,264 5,512

N 10,365 16 728 8,758 9 42 210

Total 45,021 16 1,137 20,936 74 1,418 5,703

4.2 Evaluation Settings
In this study, the directional accuracy (DA) and the
Matthews correlation coefficient (MCC) were selected as
evaluation metrics to measure the system performance
[16, 27, 39, 50]. The DA is the most popular metric for
stock classification tasks. This metric measures the upward
or downward differences in the predicted trends compared
to the actual changes in stock prices.

However, the DA tends to exhibit bias if the classes are
of very different sizes. Suppose that there are 100 samples,
among which 98% are positive samples and the remainder
are negative samples. If a classifier judges all samples to
be positive samples, the DA achieved is 98%. However,
this classifier fails to recognize the negative samples even
though it has a high DA. Therefore, in this study, we
also adopted the MCC metric avoid such bias caused by
skewed data. For both metrics, a larger value indicates better
performance. The two metrics are defined as follows:

DA =
n

N
(16)

MCC =
tp× tn− fp× fn√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)
, (17)

where n is the number of predictions for which the pre-
dicted trend and the actual stock trend show the same
direction of stock movements and N is the total number
of predictions over several days. tp(tn) is the number of
positive (negative) samples correctly classified as positive
(negative) ones. fp(fn) is the number of negative (positive)
samples falsely classified as positive (negative) ones.

In addition, considering the financial scenario, the
Sharpe ratio is applied to measure the investment robust-
ness of the proposed multimodal event-driven LSTM frame-
work. The Sharpe ratio helps investors compare investments
in terms of both risks and returns [49]. Specifically, the
Sharpe ratio describes how much excess return the investors
receive for the extra volatility they endure for holding a

riskier asset. The higher the ratio is, the greater the invest-
ment return relative to the amount of risk taken, and thus,
the better the investment. It can be defined as,

S =
rm − rf

σ
, (18)

where rm is the mean return of an investment, rf is the
risk-free rate represented by the bank rate, and σ is the stan-
dard deviation of the investment return/volatility. Thus, the
Sharpe ratio S measures the excess return per unit of risk.
It allows an investor to better isolate the profits associated
with risk-taking activities.

We take the further step of evaluating the k-day-ahead
influence of media information. In particular, there are
several k-day-ahead stock trends that can be of interest to
investors. We carry out three tracks with different trends, as
suggested by [11]. In Table 4, target 1 compares the opening
stock price on day i + k with the opening price on day i.
Target 2 follows the same logic but based on the closing
price instead of the opening price. For target 3, we compare
the closing price on day i+ k with the opening price on day
i. Although the targets of these three tracks are different,
their inputs, which consist of the fundamental and media
features from the previous k days, are the same. It can be
defined as < f1t , f

2
t , ..., f

m
t , ..., f

1
t+k−1, f

2
t+k−1, ..., f

m
t+k−1 >,

where m is the number of features.

TABLE 4: Three k-days-ahead targets.

Tracks Targets formula

Target 1 priceopeni+k − priceopeni+k−1

Target 2 priceclosei+k − priceclosei+k−1

Target 3 priceclosei+k − priceopeni+k−1

4.3 Model Parameters

Essentially, the proposed algorithm is an extension of the
traditional LSTM approach. The basic framework of our
algorithm was implemented using Keras and TensorFlow.
We tuned the parameters to achieve the optimal perfor-
mance of the proposed method. In our preliminary study,
we found an optimal θ of 0.8 in Equation (6). We also found
that among several classical activation functions, including
the sigmoid, tanh, and exponential linear unit (ELU), the
rectified linear unit (ReLU) function achieved the best per-
formance. We utilized the Adam optimizer because it allows
the learning rate to be set automatically based on the update
history of the model weights.

In addition, we carry out a series of experiments with
different k days ahead to investigate the optimal period
of influence of the media on stock movements. Figure 7
shows that stock markets respond to the news immediately,
and the impact of the media on stock markets lasts for a
few days. Such influence is able to last up to 6 days and
attenuates thereafter in terms of both the DA and MCC in
our experimental setting. This finding supports the findings
of previous studies regarding the short-term effect of media-
aware stock movements [9, 18]. Note that, since k indicates
the future time after releasing a news article, the range of k
starts from 1 as shown in the x-axis of Figure 7.
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Fig. 7: DA (a) and MCC (b) over different day intervals for the proposed multimodal event-driven LSTM model.

A
cc

ur
ac

y

���

���

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

Target 2 Target 3Target 1

SVM

DT

BP

LSTM

TeSIA

Our Modelxxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

(a) Directional accuracy

0.0

0.1

0.2

0.3

0.4

0.5

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

M
C

C

Target 2 Target 3Target 1

SVM

DT

BP

LSTM

TeSIA

Our Model
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

(b) Matthews correlation coefficient

Fig. 8: Prediction results for the directions of stock movements.

4.4 Comparison
To gauge the overall performance of the proposed approach,
we compared it with several classic methods, including
SVM, DT, backpropagation (BP) neural network, and LSTM
models. The baselines are described as follows:

• SVM: We directly concatenated the fundamental and
media information to form a super compound vector,
and used this vector as the input to the SVM model.

• DT: The DT approach is an effective modeling
method for stock forecasting. Therefore, we applied
it as one of our benchmarks. The concatenated com-
pound vector was directly fed into the DT model for
predictions.

• BP: We concatenated the fundamental and media
information into a compound vector, which was fed
into the BP neural network to generate predictions.

• LSTM: LSTM networks can achieve excellent per-
formance on time-series data. Here, we applied an
LSTM model to capture the time dependency of stock
data. The concatenated compound vector was used
as the input to the LSTM model.

• TeSIA: TeSIA is one of the state-of-the-art methods
for forecasting media-aware stock movements [16].
In TeSIA, the market information is modeled with
tensors to capture the interconnections among differ-
ent information modes. Here, we modeled the fun-
damental and media information as tensors instead
of using vectors as input.

• Our model: For our proposed multimodal event-
driven LSTM model, the fundamental and media
information are modeled as tensors to be used as the
input to the model.

Thus, we compared the proposed method to five classic
approaches (SVM, DT, BP, LSTM, and TeSIA) with three

different targets representing different predicted outcomes.
Table 5 and Figure 8 present the details of our experimental
results.

TABLE 5: Prediction results for the directions of stock move-
ments.

Model
Target 1 Target 2 Target 3

DA MCC DA MCC DA MCC

SVM 0.547 0.1956 0.519 0.0679 0.528 0.1374
DT 0.562 0.2244 0.537 0.1277 0.524 0.1195
BP 0.542 0.1438 0.551 0.1997 0.539 0.1422

LSTM 0.571 0.2354 0.583 0.2594 0.601 0.3058
TeSIA 0.584 0.2775 0.576 0.2371 0.597 0.2789

Our model 0.617 0.3516 0.614 0.3304 0.624 0.4472

In terms of both the DA and MCC metrics, the SVM
and DT models achieved the best performance for target 1
among the three considered targets. The BP model achieved
its best performance for target 2, whereas LSTM, TeSIA
and the proposed approach achieved their best performance
for target 3. Among the baseline models, the models that
achieved their best performance for target 3 also achieved
better performance overall compared with the traditional
SVM, DT and BP models. A good explanation for this
behavior is that the memory dependency in the LSTM
network enhances the effectiveness of LSTM-based methods
on time-series data. Furthermore, the result of experiments
performed on the entire year of data on the China secu-
rities market demonstrate the superiority of the proposed
approach over even these superior baselines, with perfor-
mance enhancements of at least 2.3% and 14.1% in terms
of the DA and MCC, respectively. The p-values for the t-
tests are all less than the critical confidence value (0.05),
indicating that the superior performance of the proposed
approach was statistically significant.
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4.5 Effectiveness of the Proposed Approach

The modeling of media-aware stock movements is essen-
tially a multimodal problem. Two unique challenges arise
in processing such multimodal data. First, the information
from one data mode interacts with information from other
data modes. One common strategy for addressing this
challenge is to concatenate information from various data
modes into one compound vector, thus simply ignoring
the interactions among the different modes. The second
challenge is the heterogeneity of the data in terms of sam-
pling time. Specifically, fundamental stock data consist of
continuous values sampled at fixed time intervals, whereas
news information emerges randomly. This heterogeneity
can lead to some valuable information being missing or
can even distort the feature spaces. In addition, previous
studies on media-aware stock movements have focused
on the one-to-one problem, in which news is assumed to
affect the performance of only the stocks mentioned in the
news report. However, news can also impact related stocks
and cause stock comovements. In this section, we examine
the effectiveness of the unique features of the proposed
framework in addressing these three issues.

4.5.1 Effectiveness of the Tensor Representation

As mentioned above, both fundamental and media informa-
tion can shape stock movements. Predicting media-aware
stock movements is essentially a multimodal problem. Dif-
ficulties arise in attempting to model the two relevant types
of information without ignoring the interactions among
different data types. One common strategy is to concatenate
multiple types of information into one compound vector,
thus inevitably diluting or even ignoring the intrinsic asso-
ciations between the two information sources. In this study,
we modeled market information in the form of tensors
to retain the interactions between different modes when
addressing the multimodal learning problem. To investi-
gate the effectiveness of this tensor representation, we first
compared the results of a vector-based LSTM model with
those of a tensor-based LSTM model and then explored
the differences between the results of a vector-based event-
driven LSTM model and the proposed tensor-based event-
driven LSTM model, in which an event-driven mechanism
is adopted to account for data that are heterogeneous in
terms of their sampling times for the multimodal learning
problems.

Figure 9 compares vector-based models with tensor-
based models to show the superiority of the tensor represen-
tation. Specifically, the tensor-based LSTM achieves better
performance than the vector-based LSTM in terms of target
1 and 2 in Figure 9(a). Note, however, that the vector-based
LSTM model performs slightly better than the tensor-based
LSTM model for target 3. In addition, Figure 9(b) shows
that the proposed tensor-based event-driven LSTM model
outperforms the vector-based event-driven LSTM model for
all targets. These results prove that the interactions among
different information modes affect stock movements and
that the tensor representation can efficiently preserve such
connections compared with the vector representation.

One possible explanation of the failure of the tensor
representation in the LSTM model for target 3 is that this

Target 1

A
cc

ur
ac

y

0.00

0.01

0.02

0.60

Vector-based LSTM
Tensor-based LSTM

Target 2 Target 3

(a) LSTM models

Target 1

A
cc

ur
ac

y

0.00

0.01

0.02

0.60

Vector-based event-driven LSTM
Tensor-based event-driven LSTM

Target 2 Target 3

(b) Event-driven models

Fig. 9: DA results for (a) LSTM models and (b) Event-driven
models using vector and tensor representations.

target utilizes both the opening price and the closing price,
and using both prices allows additional information to be
considered, thus overcoming the limited ability of the vector
representation in the traditional LSTM model to capture
interaction information. This observation also supports the
finding that nontransactional time information can be re-
flected in the opening and closing prices [51]. In contrast,
the success of the tensor representation in the event-driven
LSTM model with respect to target 3 can be attributed to the
event-driven mechanism in the event-driven LSTM model,
which captures even more valuable interaction information,
thus overwhelming the benefit gained from the additional
information absorbed by considering both the opening and
closing prices. A more comprehensive gauge of the effec-
tiveness of the event-driven mechanism in accounting for
the heterogeneity of the data in terms of sampling time for
multimodal learning is presented in the next section.

4.5.2 Effectiveness of the Event-driven Mechanism
To capture media-aware stock movements, accounting for
the heterogeneity of the sampling times between the two
information modes is a critical issue for this multimodal
learning problem. Specifically, the fundamental data consist
of continuous values sampled at equal time intervals, i.e.,
one day, whereas the news information consists of discrete
values sampled at nonequal time intervals because of the
randomness of news releases. This randomness leads to
failure of the long-term dependency mechanism of the tra-
ditional LSTM model [47]. Specifically, if two similar news
articles are released with a sufficiently large time gap, the
LSTM model may forget the knowledge learned from the
first news article before processing the information from the
second. In this study, we have proposed an event-driven
memory mechanism to solve this problem of heterogeneous
data sampling for multimodal learning.

Figure 10 presents the effectiveness of the proposed
event-driven mechanism in both the vector-based and
tensor-based LSTM models. Figure 10(a) shows that the
vector-based event-driven LSTM model performs better
than the traditional LSTM model for all targets. Similarly,
Figure 10(b) shows that the tensor-based event-driven LSTM
model outperforms the tensor-based LSTM model for all
targets. These findings confirm that the event-driven mech-
anism allows the event-driven LSTM model to better find
the rules and patterns characterizing stock markets given
random news event occurrences. In previous studies, this
problem has typically been solved by using only a portion
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of the data; that is, only the data sampled at the time of
a news event are retained for further analysis. However,
the failure to address the sampling heterogeneity leads to
a loss of important patterns, inevitably causing historical
information to be undervalued. By contrast, the event-
driven memory mechanism proposed in this study provides
a promising method of addressing the problem presented by
the sampling heterogeneity among different data sources in
multimodal learning.
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Fig. 10: DA results for (a) vector-based and (b) tensor-based
LSTM using event-driven LSTM models.

4.5.3 Effectiveness of Stock Relatedness
In this section, we evaluate the performance enhancement
achieved by considering the influence of related stocks
on a target stock. Previous studies on media-aware stock
movements have focused only on the one-to-one problem,
without considering the impact of related stocks. The main
challenge for considering related stocks is how to define the
relevant relationships among stocks. In this study, we have
built a media-based enterprise network under the assump-
tion that the co-occurrence of stocks in a news article reflects
their relatedness to some degree. Such relevant influences
are absorbed via the tensor decomposition and reconstruc-
tion when modeling the market information (Section 3.3).

As mentioned above, there are two ways to identify
stocks related to a target stock. One approach (implemented
in the tensor-based event-driven LSTM dl model) is to
treat only firms with direct links to the target firm in
the media-based enterprise network as related firms. The
other approach (implemented in the tensor-based event-
driven LSTM lc) is to treat all firms in the same link com-
munities as related firms, thus considering the transitive
effect. Figure 11 presents the performance of the tensor-
based event-driven LSTM none, tensor-based event-driven
LSTM dl, and tensor-based event-driven LSTM lc models
(our approach). The approaches that consider the influence
of related stocks (tensor-based event-driven LSTM dl and
tensor-based event-driven LSTM lc) outperform the tensor-
based event-driven LSTM none model, which ignores stock
comovements. This finding confirms that a target firm is
affected by its related firms and that media coverage is
an effective way to measure such relatedness. In addition,
the tensor-based event-driven LSTM lc model, which con-
siders the transitive effect when identifying related stocks
in the media-based enterprise network, outperforms the
tensor-based event-driven LSTM dl model, which identi-
fies related stocks on the basis of only direct linkages in
the network. This finding indicates that the way in which

relatedness is defined has a critical effect on the prediction
performance and that considering link communities is a
promising approach to defining relatedness.
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Fig. 11: DA results for tensor-based event-driven LSTM
models considering stock relatedness.

4.6 Investment Simulation

In this section, we describe the design and implementa-
tion of a tensor-based stock market information analyzer
based on the proposed multimodal event-driven LSTM
framework. We compare the performance of our proposed
analyzer with the performances of three state-of-the-art
trading algorithms, namely, eMAQT [9], TeSIA [16] and
AZFinText [18], as well as the classic top-N trading strategy.
Top-N is a long-term strategy based on the assumption that
if a certain combination of stocks has performed well in the
past, then the same combination will perform well in the
near future. We invested in the N highest-performing stocks
over the period between October 1 and December 31, 2015.

We chose RMB 10,000 as the investment budget, and
we further assumed zero transaction costs, as in previous
studies [16]. Finally, we compared the daily earnings of the
five approaches over three months, during which time the
CSI 100 index decreased by 5.21% (from 2, 363 to 2, 240).

In this simulation, both selling short and buying long
were allowed. Specifically, when a firm-specific news article
was released, these algorithms were used to forecast the
future stock price for that firm. For buying long, if the trend
of the predicted future price over the current stock price was
a rising signal, then the stock was purchased immediately
and sold 6 days later. The investment gain was calculated as
the spread between the sale and purchase prices. For selling
short, if the trend of the predicted future price over the
current stock price was a falling signal, then the stock was
borrowed, sold immediately and purchased at the original
price after 6 days. The investment gain was calculated as
the stock price at the time when the shares were borrowed
minus the purchase price. The horizon of 6 days was set
in accordance with our optimal parameters in Section 4.3.
Figure 12 presents the accumulated daily return (x-axis)
of these five methods over the 3-month assessment period
(y-axis) along with the CSI 100 index in the same period.
Notably, the top-N method relied on a long-term investing
strategy, with trading only at the end of the assessment
period. Thus, the daily income of the top-N method reflects
only the value of its portfolio on that day. For the other
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media-aware trading systems, the daily income is the sum
of all transaction incomes earned on that day.
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Fig. 12: Investment simulation comparison.

Figure 12 shows that among all baselines, TeSIA
achieved the best return of 113.62% (p-values<0.05), and
the top-N (N=5) method achieved the lowest return of
40.32% at the end of the 3-month assessment period.
Among all systems, our proposed approach achieved supe-
rior performance, yielding a remarkable return of 136.42%
(p-values<0.05). This result illustrates the superiority of the
proposed framework, including the mechanism of tensor
representation, event-driven and stock relatedness. Note
that this profit came from both buying long and selling
short. The profit from buying long was 62.35%, whereas
the profit from selling short was 74.07%. Selling short was
more advantageous because the predominant market trend
was downward over the evaluation period.

Specifically, AZFinText algorithm, the first framework to
incorporate both stock data and news data for predictions,
achieved a return of 70.30% in our experiment. By consid-
ering finance-oriented sentiment, eMAQT achieved better
performance, with an enhancement of 16.38%, compared
with AZFinText. In addition, the tensor-based methods
(TeSIA and our method) achieved superior returns with an
enhancement of 26.94% and 49.74%, respectively, compared
with the optimal vector-based method (eMAQT). The results
further demonstrate the effectiveness of the tensor represen-
tation.

Recall that a higher Sharpe ratio means a greater return
relative to the amount of risk taken. Table 6 presents the
Sharpe ratio of four baselines and our proposed method
in the 3-month assessment period. These results further
indicate the superiority of the proposed method, especially
in terms of the trade-off between the return and the risk.

TABLE 6: The Sharpe ratio for the different algorithms.

Algorithm Sharpe ratio

Top-N 1.195%
AZFinText 1.023%

eMAQT 1.255%
TeSIA 1.307%

Our method 1.418%

5 CONCLUSIONS AND FUTURE WORK

Stock markets are strongly affected by various types of
highly interrelated information. In both traditional finance

and behavioral finance, it is believed that market informa-
tion, especially fundamental information and news report
information, shapes stock movements. Predicting future
stock trends based on market information is essentially
a multimodal data problem. Multimodal data consist of
several modes, each corresponding to a group of similar
data sharing the same attributes. In this study, market
information data are considered to consist of two modes:
fundamentals and news. Two unique challenges arise in
processing these multimodal data. The first challenge is that
the information from one data mode interacts with informa-
tion from other data modes, violating the assumption of fea-
ture independence that is adopted in traditional supervised
learning. A common strategy in previous studies has been to
concatenate the information from various data modes into a
compound vector, thereby ignoring the interactions among
different modes. By contrast, in this study, we proposed a
tensor representation approach for modeling multimodal
market information. This method is able to preserve the
interrelations between fundamental and news information
and to capture their joint effects. The second challenge is
the sampling heterogeneity of the different data modes.
For market information, fundamental data are continuous
values sampled at fixed time intervals, whereas news infor-
mation emerges randomly. This heterogeneity can result in a
partial loss of valuable information and can even distort the
feature space. In this study, we proposed an event-driven
memory mechanism to address the sampling heterogene-
ity among different data sources for multimodal learning.
Experiments performed on an entire year of data from
the China securities market demonstrate the superiority
of the proposed approach over state-of-the-art algorithms,
including AZFinText, eMAQT, and TeSIA, and our method
achieved a return of 136.42% in an investment simulation.

In this study, we focused on media-aware stock move-
ments. However, the proposed tensor-based event-driven
LSTM framework can be generalizable to many other mul-
timodal learning problems in which the information space
consists of several interacting data modes with sampling
heterogeneity. For instance, in health care monitoring, both
daily monitoring indicators and random sickness records
are applied to detect health abnormalities [47]. Another
good example is the prediction of crop growth in agriculture
based on daily growth indicators and uncertain conditions,
including rainfall, wind and disasters [48]. However, the
effectiveness of the proposed method in related fields has
yet to be explored.
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