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Black hat hackers use malicious exploits to circumvent security controls and take advantage of system 

vulnerabilities worldwide, costing the global economy over $450 billion annually. While many 

organizations are increasingly turning to cyber threat intelligence (CTI) to help prioritize their 

vulnerabilities, extant CTI processes are often criticized as being reactive to known exploits. One 

promising data source that can help develop proactive CTI is the vast and ever-evolving Dark Web. In 

this study, we adopted the computational design science paradigm to design a novel deep learning (DL)-

based exploit-vulnerability attention deep structured semantic model (EVA-DSSM) that includes 

bidirectional processing and attention mechanisms to automatically link exploits from the Dark Web to 

vulnerabilities. We also devised a novel device vulnerability severity metric (DVSM) that incorporates 

the exploit post date and vulnerability severity to help cybersecurity professionals with their device 

prioritization and risk management efforts. We rigorously evaluated the EVA-DSSM against state-of-the-

art non-DL and DL-based methods for short text matching on 52,590 exploit-vulnerability linkages across 

four testbeds: web application, remote, local, and denial of service. Results of these evaluations indicate 

that the proposed EVA-DSSM achieves precision at 1 scores 20% - 41% higher than non-DL approaches 

and 4% - 10% higher than DL-based approaches. We demonstrated the EVA-DSSM’s and DVSM’s 

practical utility with two CTI case studies: openly accessible systems in the top eight U.S. hospitals and 

over 20,000 Supervisory Control and Data Acquisition (SCADA) systems worldwide. A complementary 

user evaluation of the case study results indicated that 45 cybersecurity professionals found the EVA-

DSSM and DVSM results more useful for exploit-vulnerability linking and risk prioritization activities 

than those produced by prevailing approaches. Given the rising cost of cyberattacks, the EVA-DSSM and 

DVSM have important implications for analysts in security operations centers, incident response teams, 

and cybersecurity vendors. 
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Introduction 

The rapid proliferation of computing technologies has 

afforded modern society with unprecedented benefits. 

Industry, government, and academia use databases, 

communication networks, and other information systems 

(IS) to execute day-to-day operations with unparalleled 

efficiency and effectiveness. Unfortunately, black hat 

hackers often use malicious exploits to circumvent security 

controls and take advantage of system vulnerabilities for 

cyberwarfare, hacktivism, espionage, or financial purposes. 

These cyberattacks cost the global economy over $450 

billion annually (Graham, 2017). To combat this societal 

issue, many organizations are increasingly developing cyber 

threat intelligence (CTI) to manage knowledge about 

hackers and emerging threats (Samtani et al., 2020a). A 

common step within the CTI process is vulnerability 

assessment, where organizations assess their systems’ flaws 

using automated tools such as Nessus. Vulnerability 

assessment results help analysts collect relevant data from 

log files located in databases, firewalls, and servers. 

Analytics such as malware analysis, event correlation, and 

forensics derive intelligence for CTI professionals to 

prioritize vulnerable devices for subsequent remediation and 

mitigation.  

Despite the maturity of CTI procedures, experts note that the 

reliance on past events (e.g., log files) creates reactive 

intelligence (Bromiley, 2016). Major industry firms such as 

Ernst & Young have long expressed that “organizations need 

to take a more proactive approach to cybersecurity” (EY, 

2014). Similarly, the internationally recognized SANS 

Institute has consistently urged organizations to use 

“external threat intelligence sources to help alert the 

organization of threats it was not previously aware of” 

(Bromiley, 2016). One promising and emerging data source 

that can help CTI professionals proactively identify exploits 

is the online hacker community or “Dark Web” (Benjamin 

et al., 2019). The Dark Web is an appealing data source for 

CTI as it contains millions of hacking tools from hackers in 

the US, Russia, the Middle East, and China. The Dark Web 

comprises four major platforms (Benjamin et al., 2019): 

forums, Internet-Relay-Chat (IRC), DarkNet Markets 

(DNMs), and carding shops. While each platform offers CTI 

value, forums are the largest (often tens of millions of posts 

in a forum) and allow hackers to freely share exploits 

(Samtani et al., 2017). We illustrate example exploits with 

their metadata (e.g., titles, dates, categories) from a hacker 

forum on the Dark Web in Figure 1.  

Researchers and practitioners have found thousands of SQL 

injections, rootkits, crypters, and other malicious exploits 

within large, international, and evolving hacker forums 

(Samtani et al., 2017). Such exploits have helped hackers 

execute highly publicized attacks resulting in organizations 

losing tens of millions of dollars and significant reputation 

(e.g., BlackPOS for Target breach) (Kitten, 2014). These 

significant ramifications underscore the importance for 

organizations to identify the hacker exploits relevant to their 

vulnerabilities to improve their cybersecurity posture 

(Shackleford, 2016). Although many exploit and 

vulnerability names share similar semantics (e.g., “Telnet 

Cracker” exploit and “Unencrypted Telnet Server” 

vulnerability), automatically creating links in a scalable and 

accurate manner is a nontrivial task due to significant non-

natural language content (e.g., system and technology 

names) and volume of hacker forums and vulnerability 

assessment data. These data characteristics limit the direct 

application of standard CTI and text mining methods and 

necessitate novel computational algorithms rooted in 

artificial intelligence (AI) (Benjamin et al., 2019; Samtani et 

al., 2020a).  

While IS scholars are uniquely equipped to tackle these 

challenges, existing IS cybersecurity research has focused on 

behavioral compliance (Wang et al., 2010; Wang et al., 

2015; Vance et al., 2015; Chen & Zahedi, 2016), risk 

management (Spears & Barki, 2010), security investments 

(Li et al., 2012; Ransbotham et al., 2012; Kwon & Johnson, 

2014), and market effects of cybersecurity (Gupta & 

Zhdanov, 2012; Kim & Kim, 2014). Studies in each area use 

behavioral or economic methods to make excellent 

contributions to our understanding of cybersecurity. The 

unique characteristics of hacker forum and vulnerability 

assessment data combined with CTI’s emphasis on the rapid 

development of novel systems and algorithms necessitates 

novel computational information technology (IT) artifacts 

(Rai, 2017; Mahmood et al., 2010; Samtani et al., 2020a). 

Motivated by the ever-increasing attention on developing 

proactive CTI from the online hacker community and by the 

lack of IS and cybersecurity analytics studies, we adopted 

the computational design science paradigm to develop a CTI 

framework with two contributions: 

1. Exploit vulnerability attention deep structured 

semantic model (EVA-DSSM). We designed a novel 

Deep Learning (DL)-based EVA-DSSM that 

automatically links exploits from hacker forums to 

vulnerabilities detected by prevailing vulnerability 

assessment tools. EVA-DSSM incorporates principles 

from emerging methods such as the deep structured 

semantic model (DSSM) from neural information 

retrieval and attention mechanisms from interpretable 

DL to automatically extract and weight the sequential 

dependencies and global relationships present in 

exploit and vulnerability names to create exploit-

vulnerability linkages. 
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Figure 1. Sample Hacker Forum Posts with Exploits 

 
2. Device vulnerability severity metric (DVSM). Based on 

the exploit-vulnerability linkages generated from the 

EVA-DSSM, we devised a new DVSM that incorporates 

exploit and vulnerability metadata such as exploit post 

date and vulnerability severity into a single score. DVSM 

aims to provide a holistic metric to help cybersecurity 

professionals execute their device prioritization, 

vulnerability remediation, and risk management efforts. 

Consistent with the computational design science paradigm 

(Rai, 2017), we rigorously evaluated the EVA-DSSM against 

state-of-the-art non-DL and DL-based short text matching 

methods with a series of technical benchmark experiments on 

four large-scale testbeds of exploits: web application, remote, 

local, and denial of service (DoS). We demonstrated the EVA-

DSSM’s and DVSM’s practical utility with two CTI case 

studies: openly accessible systems in major U.S. hospitals and 

supervisory control and data acquisition (SCADA) systems. 

Finally, we conducted a complementary user evaluation with 45 

cybersecurity professionals that examined the usefulness of the 

EVA-DSSM and DVSM results against those generated by 

prevailing benchmark approaches for the hospital and SCADA 

case studies. Taken together, the EVA-DSSM and DVSM have 

implications for analysts in security operations centers (SOCs), 

incident response (IR) teams, and cybersecurity vendors.  

Related Work 

We review four streams of literature to ground and guide our 

work: (1) hacker community (Dark Web) research to provide 

an overview of major platforms and identify how past studies 

have examined exploits within hacker forums, (2) vulnerability 

assessment principles to understand the prevailing approaches 

for discovering, assessing, and ranking vulnerabilities, (3) the 

DSSM to understand how the prevailing DL-based approach 

for short text matching operates, and (4) attention mechanisms 

identify how they can be incorporated into the DSSM to 

improve exploit-vulnerability linking performance.  

Hacker Community (Dark Web) Research 

As indicated in the introduction, hackers from the US, Russia, 

China, and the Middle East often congregate on hacker forums, 

DarkNet Markets, IRC, and carding shops to exchange 

malicious tools, knowledge, and other content (Du et al., 2018; 

Benjamin et al., 2019). We further describe each platform, its 

CTI value, and analytical challenges in Table 1.  

Hacker forums contain thousands of freely available exploits, 

have rich metadata (e.g., post dates), and focus on major 

themes (e.g., carding, exploits only). DNMs often contain 

considerable non-cybersecurity-related content (e.g., porn, 

drugs) and lack valuable CTI metadata (e.g., date) (Ebrahimi 

et al., 2020). Moreover, products must be purchased (a 

significant risk for researchers) to gain additional details. IRC 

and carding shops allow plain-text conversations or the 

posting of stolen credit cards, respectively, but prevent 

hackers from posting exploits (Benjamin et al., 2016; Li et al., 

2016). Given the analytical challenges that DNMs, IRC, and 

carding shops present, hacker forums are often preferred by 

cybersecurity researchers aiming to examine exploit-related 

content for CTI (Benjamin et al., 2019). We present selected 

recent studies that examine exploits in online hacker forums 

in Table 2. We summarize each study’s CTI task(s), method(s) 

employed, identified exploits, and whether any exploit-

vulnerability linking was conducted.  
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Table 1. Summary of Major Hacker Community (Dark Web) Platforms 

Platform Description CTI value Analytical challenges 

Hacker 
Forums 

Discussion boards 
allowing hackers to 
freely share, 
access, and discuss 
malicious tools  

• Only platform providing freely 
accessible tools  

• Richest metadata (post dates, 
hacker names) for identifying key 
hacker and emerging threats  

• Significant natural, multilingual and non-
natural text content 

• Large quantities of data precludes 
conventional CTI analytics or manual 
analysis 

DarkNet 
Markets  

Online 
marketplaces that 
sell malicious 
content, illicit goods, 
and illegal products 

• Discover breached/stolen content 

• Serve as early indicator for 
breached companies 

• Pinpoint key sellers 

• Lacks key metadata (e.g., post date)  

• Purchase content before access 

• Mostly content unrelated to cybersecurity 
(e.g., drugs, porn) 

Internet-
Relay-Chat  

Online channels 
that allow clear-text, 
real-time chat 

• Commonly used by hacktivist 
groups 

• No mechanism to share exploits 

• Significant text content 

Carding 
Shops 

Platforms selling 
stolen credit/debit 
card information 

• Detect breached individuals, 
organizations, and entities 

• Lacks CTI-relevant metadata (e.g., post 
date) 

• Limited mechanisms for exploit-sharing 

 

Table 2. Selected Recent Studies Examining Exploits in Online Hacker Forums 

Year Author CTI task(s) Method(s) Identified exploits Vulnerability 
linking? 

2020 Ampel et al.  Categorizing and labeling 
hacker exploits 

Deep 
transfer 
learning 

Web applications, DoS, 
Remote, Local, SQLi, XSS, File 
inclusion, Overflow 

No 

2020c Samtani et al.  Detecting emerging hacker 
exploits 

Diachronic 
linguistics 

DoS, Crypters No 

2019 Schäfer et al.  Forum exploration  SNA DDoS, botnets, DoS No 

2018 Deliu et al.  Exploit categorization SVM, LDA Botnet, crypter, DDoS, rootkit No 

2018 Williams et al.  Incremental collection  LSTM Database, network, mobile No 

2017 Deliu et al.  Exploit categorization SVM Spamming, crypters, SQLi No 

2017 Sapienza et al.  Emerging trends Keywords Botnets, DDoS, DoS No 

2017 Samtani et al.  Exploit categorization, key 
hacker ID, CTI system  

SVM, LDA, 
SNA 

Bots, crypters, keyloggers, 
SQLi, XSS  

No 

2017 Grisham et al.  Detecting key hackers for 
mobile malware  

RNN, SNA  Mobile malware No 

2016 Samtani and 
Chen  

Identifying key hackers SNA Keyloggers  No 

2016 Li et al.  Exploring hacker exploits sLDA Malware, phishing, botnets No 

2016 Nunes et al.  Exploring hacker exploits SVM Botnets, keyloggers, 0-days No 

2015 Samtani et al.  Exploring hacker exploits SVM, LDA Bots, crypters, web exploits No 

Note: DDoS = distributed denial of service; DoS = denial of service; DTL= deep transfer learning; LDA = latent Dirichlet allocation; LSTM = long-
short term memory; OLS = ordinary least squares; RNN = recurrent neural network; sLDA = supervised latent Dirichlet allocation; SNA = social 
network analysis; SQLi = structured query language injection; SVM = support vector machine; XSS = cross-site scripting. 
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Most studies have used algorithms such as SVM, RNN, 

LSTM, and LDA to identify and categorize bot nets, email 

hacks, keyloggers, web exploits, and other exploits (Samtani 

et al., 2015; Nunes et al., 2016; Li et al., 2016; Deliu et al., 

2017; Deliu et al., 2018; Williams et al., 2018; Schäfer et al., 

2019; Ampel et al., 2020). Some studies have made efforts to 

study phenomena related to exploits, including identifying key 

hackers sharing exploits (Samtani et al., 2016; Grisham et al., 

2017) and emerging threats (Sapienza et al., 2017; Samtani et 

al., 2020c). While each study provides valuable knowledge 

about exploits in Dark Web forums, we are unaware of any 

studies identifying how exploits link to an organization’s 

vulnerabilities. Designing a forum-based approach to link tens 

of thousands of exploits and vulnerabilities automatically 

requires a principled, data-driven methodology. Therefore, we 

summarize metadata available in hacker forums that provide 

exploits in Table 3. We categorize metadata into three groups: 

(1) description, which pertains to key descriptors associated 

with the exploit; (2) operation, which details how the exploit 

operates; and (3) content, which is the raw text content from 

the exploit. 

Each exploit has metadata such as the post date, author name, 

description, category (e.g., web, remote, etc.), and targeted 

platforms. All fields are fully populated except for “verified 

exploit” and “common vulnerabilities and exposure” (CVE). 

Additionally, data may vary in quality and volume. For 

example, the exploit description and exploit content often 

contain significant noise and are therefore not reliable data 

sources for automated exploit-vulnerability linking (Ampel et 

al., 2020; Samtani et al., 2017). Each exploit name is created 

by a hacker and therefore often includes information about the 

targeted system, version, technology, and functions (typically 

in that order) clearly and unambiguously. These data 

characteristics can be leveraged to link to an organization’s 

vulnerabilities. However, this requires understanding 

approaches to discover and categorize vulnerabilities and their 

data characteristics.  

Vulnerability Assessment Principles 

A vulnerability is “a flaw within a system, application or service 

which allows an attacker to circumvent security controls and 

manipulate systems in ways the developer never intended” 

(Kennedy et al., 2011). Organizations often use assessment 

tools to automatically identify, categorize, and prioritize tens of 

thousands of vulnerabilities, including web application issues, 

unpatched technology, and default logins (Sectools, 2018). We 

illustrate a sample vulnerability listing from Nessus, a 

prevailing vulnerability assessment tool in Table 4. We also 

categorize and describe key metadata available in the listing. 

Each vulnerability in prevailing scanners provides 

description-based metadata such as name, synopsis, 

description, class (family) name, CVE, published and 

updated dates, and a list of vulnerable system versions. 

Additionally, each vulnerability includes risk details such as 

CVSS score and risk factor. The vulnerability name is the 

only fully populated attribute (appears in all records). 

Cybersecurity professionals construct each name to 

summarize its key aspects (e.g., susceptible system, version, 

operations). With respect to risk details, CVSS is essential for 

vulnerability prioritization and risk management. Designed by 

Carnegie Mellon University’s Computer Emergency 

Response Team (CERT) and the National Institute of 

Standards and Technology (NIST), CVSS standardizes 

vulnerability information by considering various base, 

environmental, and temporal factors such as vulnerability 

type, age, and the severity of the consequences if the 

vulnerability is exploited (Mell et al., 2007). CVSS scores 

range from 0.0 to 10.0, and are segmented as “informational,” 

“low,” “medium,” “high,” and “critical” levels. We 

summarize CVSS severity (risk) ranks, CVSS ranges, and 

examples of vulnerabilities in Table 5. 

CVSS provides security practitioners (analysts in SOCs, IR 

teams) a mechanism for prioritizing and managing the risk of 

their vulnerable devices (Farris et al., 2018; Samtani et al., 

2018). Despite the extensive usage of vulnerability scanners 

and CVSS, we are unaware of any study that leverages the 

content within vulnerability names (e.g., system names, 

technology names, etc.) to identify the most relevant exploit 

name (also fully populated) from online hacker forums in the 

Dark Web. Fusing both data sources can help facilitate the 

development of novel device prioritization metrics that 

incorporate key metadata from hacker exploits (e.g., post 

dates) and vulnerability descriptions (e.g., CVSS) (Allodi & 

Massacci, 2014).  

Deep Structured Semantic Model (DSSM)  

Our review of the data characteristics of exploits from hacker 

forums indicates that exploit names are short texts created by 

hackers that sequentially detail the vulnerability and system(s) 

they are designed for. Similarly, vulnerability names are short 

texts produced by cybersecurity professionals that often 

sequentially summarize the system, version, and method of 

exploitation. Both attributes are fully populated in exploit and 

vulnerability data sources and often have relevant and 

overlapping contents (e.g., system names). Therefore, 

automatically linking exploits to vulnerabilities using their 

names only is a scalable, practical, and low-risk approach (no 

vulnerability recreation or exploit dropping is required).  
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Table 3. Summary of Metadata in Hacker Forums that Provide Exploits 

Category Metadata Description 

Description Exploit name Exploit name that defines its function and target 

Author name Name of hacker who posted 

Post date Date when exploit was posted 

Exploit category Major category an exploit belongs to 

Operation Targeted platform Specific platform and exploit targets  

Common vulnerabilities and exposure (CVE) Standardized representation of a vulnerability  

Verified exploit Verified by community that the exploit is operational 

Content Exploit description Natural language explanation of the exploit  

Exploit discussion Discussions between forum members  

Exploit content  Raw exploit source code  

 

Table 4. Illustration and Summary of Vulnerability Assessment Metadata 

 

Category Metadata Description 

Description  Name (Title) Short, descriptive 
name of vulnerability 

Synopsis Short description of 
vulnerability 

Description Text description about 
vulnerability 

Class 
(family) 
name 

Family of the 
vulnerability  

CVE Vulnerability number 

Published 
and updated 

dates 

Date vulnerability was 
publicly published 

Vulnerable 
systems 

List of systems 
susceptible to 
vulnerability  

Risk details CVSS 
score* 

0.0-10.0 vulnerability 
severity value 

Risk factor Categorical rating of 
risk (High, Low) 

Note: *CVSS = common vulnerability scoring system. 
 

Table 5. CVSS Score Severity (Risk) Rankings, Ranges, and Examples  

Severity (risk) 
ranking 

CVSS 
range 

Examples of vulnerabilities 

Critical 9.0 – 10.0 Unsupported* operating system, hypertext preprocessor (PHP) unsupported version 
detection, open secure sockets layer (OpenSSL) unsupported 

High 7.0 – 8.9  SQL injections, OpenSSH vulnerabilities, buffer overflows, Linux chunk handling  

Medium 4.0 – 6.9  Cross-site scripting (XSS), browsable web directories, OpenPAM DoS, unencrypted telnet 
server, Dropbear secure socketshell (SSH) vulnerabilities 

Low 0.1 – 3.9 Cleartext submission of credentials, authentication without HTTPS  

Note: *Unsupported means that the vendor of the system is no longer providing patches and updates for the system. A viable solution to solve 
this issue is to upgrade to the latest system version.  
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Prevailing short-text matching algorithms such as cosine 

similarity, latent semantic analysis (LSA), best matching 25 

(BM25), and term-frequency inverse document frequency 

(TF-IDF) originate from information retrieval literature (Chen 

et al., 2012). Despite their widespread usage, these 

conventional algorithms often suffer in performance when 

analyzing user- or machine-generated text corpora that 

contain misspellings, variations, and non-natural language, 

especially for cybersecurity applications (Nunes et al., 2018). 

These limitations have ushered in DL-based short text 

similarity methods from neural information retrieval 

literature. DL uses multiple layers of neural networks with 

nonlinear activation functions to automatically learn feature 

representations from data (Goodfellow et al., 2016; LeCun et 

al., 2015). DL has achieved unprecedented performance in 

malware analysis, DNM language translation, and other 

cybersecurity applications (Samtani et al., 2020a). The 

prevailing DL-based short text matching algorithm is the 

DSSM (Huang et al., 2013; Mitra & Crasswell, 2018). We 

depict the DSSM operating in a short text matching task 

(retrieving a document title based on a query) in Figure 2.  

A DSSM has three major components (excluding 

preprocessing): 

1. Word hashing: DSSM extracts letter trigrams from 

input texts before proceeding to neural network 

processing. For example, “buffer overflow” is hashed to 

“#bu, buf, uff, ffe, fer, er#, #ov, ove, ver, rfl, flo, low, 

ow#.” This increases robustness to noise (e.g., word 

variations, misspellings, etc.) and captures fine-grained 

linguistic cues such as roots and morphs.  

2. Deep neural network (DNN) processing: Each hashed 

phrase is inputted as a bag of trigrams into a fully 

connected (i.e., dense) feed-forward DNN layer for 

conversion into a low-dimensional embedding. Multiple 

layers can be stacked to reduce dimensionality (e.g., 

layer 1 → 30K dimensions to 300, layer 2 → 300 to 128 

dimensions) and identify semantics missed by non-DL 

approaches.  

3. Computing embedding similarity: Cosine similarity 

calculates the distance between embeddings. A softmax 

function calculates the conditional probability (i.e., 

P(D|Q)) for a document (D) – query (Q) pair. The 

document title with the highest conditional probability 

with the query is the most relevant. During training, this 

probability is compared with the ground truth. The 

residual error is backpropagated to update the weights of 

the DNN.  

Past studies have adjusted DSSM by substituting the feed-

forward network with a convolutional neural network (CNN) 

to capture word co-occurrences from input text (Mitra et al., 

2016; Pang et al., 2016b; Shen et al., 2014b). In situations 

where word orders or sequential dependencies exist in the 

input text, scholars have replaced the first dense layer with a 

long-short term memory (LSTM) layer (Wan et al., 2016; 

Wang & Jiang, 2017). DSSM-based models have been used 

for searching news articles (Guo et al., 2016; Pang et al., 

2016a), retrieving social media posts (Jaech et al., 2017; Song 

et al., 2016), ranking web pages (Shen et al., 2014a), digital 

assistant systems (Sarikaya, 2017), community question 

answering (Zhou et al., 2016), and recommender systems 

(Zhang et al., 2019).  

Despite its widespread usage, DSSM processes input texts 

separately until the final embedding comparison. As a result, 

DSSM cannot capture global relationships across input texts 

during the training process to improve overall matching 

performance. However, exploit and vulnerability names often 

have overlapping contents (e.g., system names) and similar 

semantics; processing them separately cannot weigh and 

prioritize their overlapping input text features to improve 

exploit-vulnerability linking performance. An emerging and 

promising approach that can capture relationships across input 

texts and feature importance during DL training is the use of 

attention mechanisms (Du et al., 2019), which we review next.  

Attention Mechanisms  

Attention mechanisms belong to an emerging branch of 

machine learning known as interpretable deep learning (IDL). 

Two major categories of IDL exist: post hoc and intrinsic (Du 

et al., 2019). Post hoc approaches use a second method to 

examine major model components and/or individual 

parameters after training (after model convergence) to 

identify how they contribute to the final output. Intrinsic 

approaches integrate self-explanatory models into a DL 

architecture and operate during training (e.g., feed-forward, 

backpropagate, and weight updates). Two major categories of 

intrinsic approaches exist: (1) global, which includes 

mechanisms such as capsule networks (Sabour et al., 2017) 

and wide and deep networks (Cheng et al., 2016); and (2) 

local, which primarily comprises attention mechanisms. The 

selection of an IDL approach is dependent on the task, data, 

and requirements of a particular study (Du et al., 2019; 

Samtani et al., 2020b). Attention mechanisms are often 

preferred when aiming to assign trainable weights to 

individual features within a data input, using feature weights 

to improve model performance, and/or identifying how input 

data features affect end model performance (Du et al., 2019). 

We further examine attention mechanisms since exploit and 

vulnerability names often contain overlapping features (global 

relationships) that could be leveraged to improve exploit-

vulnerability linking performance. 
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Figure 2. Deep Structured Semantic Model (DSSM) (adapted from Huang et al., 2013) 

 
Attention mechanisms are implemented as carefully 

formulated layers within a neural network architecture (Du et 

al., 2019). Formally, an attention mechanism is denoted by a 

query Q and a key-value pair (K, V). The attention is computed 

as the weighted sum of value V and the weight assigned for 

each value is determined by the scoring function which 

measures the similarity between the query Q and the key K. 

For instance, in the sequence-to-sequence model for language 

translation, at each step, the query Q is the hidden state of the 

last timestep in the decoder while the hidden states from the 

encoder act as both Q and K. Based on the similarity distance 

computed by the scoring function, the weights for the inputted 

features are updated and indexed with a softmax function. 

Features are iteratively reweighted during training until model 

convergence. Attention mechanisms can be customized to 

focus on entire input sequences or portions, depending on the 

data characteristics and/or network architecture. To date, 

attention mechanisms have improved the performance of 

conventional DL architectures (e.g., DNN, recurrent neural 

network, convolutional neural network, variational 

autoencoders) for neural machine translation (Luong et al., 

2015), sentiment analysis (Letarte et al., 2018), image 

classification (Schlemper et al., 2019), adverse event detection 

(Ahmad et al., 2020), and other applications. Evaluation is 

typically executed by comparing the extended model against 

the original on a gold-standard (i.e., ground-truth) dataset (Du 

et al., 2019). Despite its increasing usage, we are unaware of 

any attention mechanisms designed for DSSMs to support 

exploit-vulnerability linking.  

Research Gaps and Questions 

We identified several key research gaps from the literature 

review. First, most hacker forum studies have focused only on 

exploring hacker exploits. We are unaware of any integrated 

hacker forum-data driven approach linking exploits to 

vulnerabilities. Since organizations have limited security 

budgets and must prioritize exploits based on their 

vulnerabilities, simply exploring exploits has minimal CTI 

value. Second, while automated tools exist for conducting 

vulnerability assessments, there lacks literature examining 

vulnerability text to create exploit-vulnerability links. This 

prevents a holistic perspective of what exploits can target 

vulnerabilities and precludes the development of advanced 

vulnerability severity metrics for enhanced device prioritization 

or risk management. Third, DSSM processes input texts 

separately until embedding comparison and therefore cannot 

capture and prioritize overlapping input text features (e.g., 

system names) and semantics between exploit and vulnerability 

names to improve linking performance. Attention mechanisms 

can be a viable approach for addressing these issues and can 

enhance DSSM’s performance in creating exploit-vulnerability 

linkages. However, we are unaware of any design artifacts that 

integrate attention mechanisms into DSSMs for exploit-

vulnerability tasks. Taking these gaps together, we pose the 

following research questions for study: 
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• What vulnerabilities do hacker exploits from hacker 

forums target? 

• How can device-level severity scores be calculated that 

incorporate vulnerability and hacker exploit metadata to 

facilitate CTI? 

• How can attention mechanisms be incorporated into the 

DSSM to capture and prioritize overlapping features 

within exploit and vulnerability names to create exploit-

vulnerability links? 

Proposed Exploit-Vulnerability Linking 
Framework 

The research gaps described above are underscored by the 

lack of a technical framework within academia or industry that 

can automatically link thousands of hacker exploits to 

vulnerabilities (Samtani et al., 2020d). Therefore, we propose 

an exploit-vulnerability linking framework for CTI with four 

major components: (1) data collection, (2) exploit-

vulnerability linking and prioritization, (3) technical 

benchmark experiments, and (4) case studies and expert 

evaluation. We present the proposed framework in Figure 3. 

Each major framework component is described in the 

following subsections. 

Data Collection 

We aimed to collect a large set of hacker exploits and 

vulnerabilities to facilitate the proposed analysis. For the hacker 

exploit collection, we identified a large and long-standing 

exploit-specific hacker forum well-known in the hacker 

community for containing a variety of malicious tools. This 

forum (anonymized to protect us) has contributors from the 

Middle East, the U.S., Russia, and other regions. Many exploits 

are 0-days used in well-publicized attacks. A web crawler routed 

through Tor collected and parsed all exploit-category, post-date, 

author-name, platforms-targeted, and exploit-description data 

into a relational database. This resulted in nearly 21,000 exploits. 

We filtered out exploits that did not include the targeted platform 

or category, as they prevented our proposed analysis. A 

summary of each exploit category and the number of authors and 

platforms targeted is presented in Table 6.   

In total, our collection and filtering processes resulted in 18,052 

exploits across four categories: web applications (10,368 

exploits), local (2,399 exploits), remote (2,602 exploits), and 

DoS (2,683 exploits). All exploits were non-overlapping; no 

exploit appeared in more than one dataset. In total, these 

exploits targeted 31 operating systems, web applications, and 

programming languages. In addition to collecting hacker forum 

exploits, we also compiled a comprehensive list of vulnerability 

names, their descriptions, and severity scores from 

Securityfocus.com, a trusted INFOSEC resource providing 

vulnerability information for tools such as Nessus, Qualys, and 

Burp Suite (Mell et al., 2007). The overall collection is 

summarized in Table 7. 

The vulnerability collection contained 87,109 “critical,” “high,” 

“medium,” “low,” and “informational” listings. We note that 

two categories of vulnerabilities are not amenable to the 

proposed text analytics. The first pertains to social engineering 

(e.g., usernames/passwords). These lack “technical” exploits. 

Rather than posting credentials on forums as exploits, hackers 

directly consult the user manuals for default login credentials 

(Samtani et al., 2016). Second, none of the “informational” 

vulnerabilities were not suitable for linking as they simply 

provide system information and do not associate a vulnerability 

severity (thus preventing their inclusion into severity metrics). 

When accounting for these two situations, 64,104 / 87,019 

(73.67%) of vulnerabilities were suitable for linking.  

Exploit Vulnerability Linking and Prioritization: 
Exploit-Vulnerability Attention Deep Structured 
Semantic Model (EVA-DSSM) 

Given the aforementioned issues with the conventional 

DSSM, we designed a novel EVA-DSSM architecture that 

integrates a bidirectional LSTM (Bi-LSTM) layer and two 

attention mechanisms (context attention and self-attention) to 

enhance the exploit-vulnerability linkage performance. We 

compare the key operational differences between the DSSM 

and the proposed EVA-DSSM in Figure 4. Model novelty is 

highlighted in red. 

EVA-DSSM operates in seven steps: (1) preprocessing, (2) 

letter trigram word hashing, (3) Bi-LSTM processing, (4) 

context attention layer, (5) self-attention layer, (6) DNN 

processing with shared dense layer(s), and (7) computing 

embedding similarity. EVA-DSSM’s core novelty lies in Steps 

3-5. The overall EVA-DSSM process and design rationale are 

described below: 

Step 1 (preprocessing): Preprocessing is essential for attaining 

strong model performances (Chen et al., 2012; Zeng et al., 2010). 

Only exploit and vulnerability names are used in this study, as 

they are populated in all records. While additional content could 

be used, that is out of scope in our targeted analysis. All exploit 

and vulnerability names are stemmed, lowercased, and have stop 

words removed. Implementing these steps normalizes 

irregularities (e.g., capitalization) and follows common hacker 

forum analysis practices (Nunes et al., 2018). 
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Figure 3. Proposed Exploit-Vulnerability Linking Framework for CTI 

 

Note: *Authors are overlapping (i.e., a single author can post exploits in multiple categories). The number presented is the number of unique 
authors. Similarly, a single exploit category can target multiple platforms, and the number presented in the unique platforms. 

 

Table 7. Summary of Vulnerability Information Collection 

Risk level CVSS score Number of vulnerability listings Number amenable for text analytics 

Critical 9.0 – 10.0 8,355 8,170 

High 7.0 – 8.9  24,098 23,897 

Medium 4.0 – 6.9  28,707 28,674 

Low 0.1 – 3.9  3,163 3,163 

Informational 0.0 – 0.0  22,696 0 

Total: - 87,019 64,104 

 

 

Table 6. Summary of Hacker Forum Exploit Collection 

Category Description 
# of 
exploits 

# of 
authors 

# of platforms 
targeted 

Web applications Exploits targeted at web technologies 10,368 2,810 19 

Local  Exploits executed on a local system  2,399 952 25 

Remote Network attack where the attacker exploits a 
vulnerability without local access  

2,602 1,293 24 

DoS Attacks that deny service to systems 2,683 1,460 23 

Totals: - 18,052 *5,547 *31 
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Conventional DSSM 

 

Proposed EVA-DSSM 

 

Conventional DSSM Procedure 
1. Preprocessing 
2. Letter trigram word hashing  
3. DNN processing with dense layer(s) 
4. Computing embedding similarity 

EVA-DSSM Procedure (Novelty appears in red) 

1. Preprocessing 
2. Letter trigram word hashing 
3. Bi-LSTM processing 
4. Context attention layer 
5. Self-attention layer 
6. DNN processing with shared dense layer(s) 
7. Computing embedding similarity 

Figure 4. Conventional DSSM (left) vs. Proposed EVA-DSSM (right) 

Step 2 (word hashing): A core aspect of DSSM processing 

is hashing inputted text. Consistent with best practices in 

past DSSM studies, letter trigrams are extracted from 

preprocessed text (Mitra & Crasswell, 2018). Extracting 

letter trigrams is also consistent with past literature 

examining non-natural language (Nunes et al., 2018). Each 

word hashed input is passed through a single fixed 

embedding layer to control embedding length size.  

Step 3 (Bi-LSTM processing): The standard DSSM uses a 

bag-of-trigrams representation of input texts and therefore 

does not capture sequential dependencies within text. 

However, exploit and vulnerability names often possess 

sequential dependencies (e.g., system name appears before 

version type). To capture dependencies, we first replace 

dense (i.e., fully connected feed-forward) layer of the DSSM 

with a Bi-LSTM layer. Each Bi-LSTM time-step processes 

a letter trigram sequentially in both forward and backward 

directions (rather than the single direction proposed in past 

studies (e.g., Wan et al., 2016; Wang & Jiang, 2017)). In this 

fashion, the last output (i.e., after processing all previous 

time-steps) comprehensively captures the context of the 

entire letter trigrams sequence.  

Step 4 (context attention layer): Rather than treating input 

texts separately until embedding comparison (like the 

standard DSSM), we aimed to examine the relationships 

(overlapping contents) across the inputted vulnerability and 

exploit names. While they cannot be directly matched due to 

content variations, they share similar contents (e.g., system 

names). Extracting and weighting vulnerability trigrams 

given a particular exploit can boost overall linking 

performance. To achieve this, we formulated a novel context 

attention layer that operates with five elements: 
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1. Key (K): K commonly refers to the source data in the 

attention mechanism. Since the Bi-LSTM is used upon 

the raw vulnerability input text, each Bi-LSTM hidden 

state corresponds to a vulnerability trigram. We denote 

the hidden states as (𝒉1
v, 𝒉2

v, … 𝒉𝑛
v ) where 𝑛 is the length 

of the sequence and the superscript v represents 

vulnerability. Therefore, the key K refers to (𝒉1
v, 𝒉2

v, … 

𝒉𝑛
v ).   

2. Query (Q): for the 𝑖-th exploit trigram, the 

corresponding hidden state 𝒉𝑖
e  (superscript e represents 

exploits) from the Bi-LSTM is a query. 

3. Value (V): Since the Bi-LSTM operates directly upon 

the source data, the key and the value are the same in the 

EVA-DSSM.  

4. Scoring function (S): given a query 𝒉𝑖
e and key K, the 

scoring function computes the attention weights via  

𝐴𝑐(𝒉𝑖
e, 𝒉𝑗

v) =
exp (similarity(𝒉𝑖

e, 𝒉𝑗
v))

∑ exp (similarity(𝒉𝑖
e, 𝒉𝑗

v))𝑛
𝑗=1

,

∀ 𝑖 ∈ [1,2 … , 𝑚], 𝑗 ∈ [1,2 … , 𝑛], (1)

 

where 𝑚 is the length of the exploit text. This 

computation results in a set of weights identifying which 

aspect of the vulnerability the 𝑖-th exploit trigram is most 

related to. In EVA-DSSM, we adopt the multiplicative 

attention, a widely recognized attention mechanism by 

scholars (Luong et al., 2015). Formally, 

similarity(𝒉𝑖
e, 𝒉𝑗

v) = (𝒉𝑖
e)T𝑾𝑐𝒉𝑗

v where 𝑾𝑐 is a 

trainable parameter.  

5. Context vector (C): calculate weighted sum of the 

values for each exploit trigram,  

𝒄𝑖 = ∑ 𝐴𝑐(𝒉𝑖
e, 𝒉𝑗

v)

𝑛

𝑗

∙ 𝒉𝑗
v, ∀ 𝑖 ∈ [1,2 … , 𝑚]          (2) 

Following the above process, a context vector is generated for 

each hidden state of the exploit trigrams. For each trigram, we 

concatenate the exploit trigram hidden state 𝒉𝑖
e with 

corresponding context vector 𝒄𝑖. We use 𝒐𝑖 to denote the 

concatenated vector and the computation is given by 

𝒐𝑖 = [𝒉𝑖
e;  𝒄𝑖] (3) 

Operating in this fashion captures the relationships across 

exploit and vulnerability texts (i.e., global information) with 

the context vector, and information within the exploit texts 

(i.e., local information).  

Step 5 (self-attention layer): Given the concatenated vectors 

[𝒐1, 𝒐2, … , 𝒐𝑚], the self-attention mechanism computes the 

attention weights assigned for the hidden states 

[𝒉1
e, 𝒉2

e , … , 𝒉𝑚
e ]. A focused exploit embedding 𝑬e is obtained 

as the weighted sum of the hidden states (Vashishth et al., 

2019). Formally, we use 𝐴𝑖
s to denote the attention weight 

assigned for the 𝑖-th trigram. The computation is:  

 𝐴𝑖
s =

exp(𝑢𝑖𝑤)

∑ exp(𝑢𝑖𝑤)𝑚
𝑖

, (4) 

𝑢𝑖 = tanh(𝑾s𝒐𝑖 + 𝑏) , (5) 

where {𝑤, 𝑾s, 𝑏} are trainable parameters. Then, the exploit 

embedding 𝑬e is given by: 

 𝑬e = ∑ 𝐴𝑖
s ∙ 𝒉𝑖

e

𝑚

𝑖

. (6) 

In this way, the embedding 𝑬e summarizes the exploit texts 

information according to the relationships across exploit and 

vulnerability texts and the relationship within the exploit texts. 

Step 6 (DNN processing with shared dense layer[s]): The 

focused exploit embedding 𝑬e and the last output of the Bi-

LSTM assigned to the vulnerability text 𝒉𝑛
v  (that summarizes 

information of all vulnerability letter trigrams) are both 

embeddings that summarize the input trigram sequences. To 

facilitate embedding similarity calculation, we input both 

generated embeddings into shared dense layers to project them 

into the same embedding space (Step 7). Formally, 𝑹e =

ShareDense(𝑬e), 𝑹v = ShareDense(𝒉𝑛
v ) where ShareDense(∙) 

refers to the projection of the same dense layers. 

Step 7 (Computing Embedding Similarity): Cosine 

similarity computes the distance between 𝑹e and 𝑹v. 

Consistent with Huang et al. (2013), the softmax is used to 

obtain the conditional probability of 𝑃(E|V) and the loss 

function is defined as 

ℒ = − log ∏ 𝑃(E|V+)

E,V+

(7) 

where 𝑉+ denote the relevant vulnerabilities. During the 

model training phase, the loss is backpropagated to update 

network parameters according to gradient-based methods.  

EVA-DSSM was implemented with the Keras, TensorFlow, 

Natural Language Toolkit (NLTK), numpy, pandas, genism, and 

scikit-learn packages. We present the EVA-DSSM pseudocode 

in Algorithm 1 to help interested readers implement the core 

algorithm in their chosen programming language.  
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Algorithm 1. Pseudocode of the Proposed EVA-DSSM Algorithm 

Inputs: 𝑀 exploits 𝐄 = {E𝑖 , 𝑖 = 1, 2, … , 𝑀}, 𝑁 vulnerabilities 𝐕 = {V𝑗 , 𝑖 = 1,2, … . , 𝑁} 

Outputs: EVA-DSSM parameters 

procedure: 

# Generate the initial trigram-hash embeddings for all vulnerabilities and exploits 

triHashEmbE = {Embedding(trigramHashing(E𝑖)), 𝑖 = 1, 2, … , 𝑚} 

triHashEmbV = {Embedding(trigramHashing(V𝑗)), 𝑗 = 1, 2, … , 𝑛} 

 

while not convergence* do: 

for each V𝑗 in 𝐕 do: 

# Bi-LSTM processing 

Obtaining hidden states [𝒉1
V𝑗, 𝒉2

V𝑗, … 𝒉𝑛
V𝑗] = SharedBi-LSTM(triHashEmb𝑗

V
)  

Computing final embedding of vulnerability 𝑹𝑗
v = SharedDense(𝒉𝑛

V𝑗
) 

for each E𝑖 in 𝐄 do: 

Obtaining hidden states [𝒉1
E𝑖, 𝒉2

E𝑖, … 𝒉𝑚
E𝑖 ] = SharedBi-LSTM(triHashEmb𝑖

E
)  

# Context attention computation 

for each 𝑘 in {1, 2, … , 𝑛} do: 

Exploit attention weight according to Equation (1) 

Computing context vector according to Equation (2)  

Getting concatenated vector according to Equation (3) 

end for 

 

# Self-attention computation 

Computing self-attention weights according to Equation (4) and (5) 

Computing focused exploit embedding 𝑬𝑖
e according to Equation (6) 

    

# DNN processing with Dense layers 

Compute final embedding of exploit 𝑹𝑖
e = SharedDense(𝑬𝑖

e) 

Compute similarity Sim𝑖 = cos(𝑹𝑗
v, 𝑹𝑖

e) 

end for 

Calculate the probability 𝑃(Ei|Vj) = Softmax(Sim𝑖|Sim1, Sim2, … , Sim𝑀) 

end for 

       Compute loss ℒ according to Equation (7) 

Update weights according to gradient descent method 

end while 

return model parameters 

Note: *convergence is determined by the change of ℒ; SharedBi-LSTM(∙) refers to processing vulnerabilities and exploits using the same Bi-
LSTM as suggested by Huang et al., 2013 

 

Exploit-Vulnerability Linking and Prioritization: 
Device Vulnerability Severity Metric (DVSM)  

The EVA-DSSM is a novel approach for automatically 

identifying relevant hacker exploits for a vulnerability. 

Coupling hacker exploit and vulnerability metadata based on 

EVA-DSSM’s output to create specialized severity (risk) scores 

can further create holistic CTI and facilitate enhanced device 

prioritization capabilities (Allodi & Massacci, 2014; Samtani et 

al., 2020a). First, devices are often afflicted with multiple 

vulnerabilities, each with their own severity score. However, we 

are unaware of any approach to aggregating vulnerability 

severities in devices with multiple vulnerabilities. Second, each 

hacker exploit has a post date. Newer exploits, such as 0-days, 

often have significantly more CTI value than older exploits. As 

an exploit ages, knowledge about its operations is quickly 

disseminated to the cybersecurity community and therefore 

exponentially loses value (Mell et al., 2007). Since EVA-

DSSM determines the most relevant exploit for a vulnerability, 

we developed a novel device vulnerability severity metric 

(DVSM). All DVSM features and their justification for 

inclusion are presented in Table 8.  
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Table 8. Features Incorporated into the Device Vulnerability Severity Metric (DVSM) 

Feature 
Category 

Feature Justification for inclusion References 

Vulnerability Vulnerability severity 
(CVSS, 0.0-10.0) 

A higher severity score indicates more severe 
consequences if device is compromised. 

Mell et al. 2007; 
Weidman 2014; 
Kennedy et al. 2011 

Number of device 
vulnerabilities 

Devices with more vulnerabilities have a higher 
exploit susceptibility. 

Hacker 
exploit 

# of exploits targeting 
vulnerabilities 

More hacker exploits targeting a vulnerability 
increases the probability of the device’s harm. 

Friedman 2015; 
Robertson et al. 2017 

Age of hacker exploits (i.e., 
forum post date) 

Newer exploits are more valuable for CTI since 
there is less time to formulate defenses.  

Shackleford 2016 

DVSM encompasses the number of vulnerabilities in a device, 

each vulnerability’s severity, and the hacker exploit age for 

each vulnerability. Formally, the DVSM is denoted as: 

𝐷 = ∑ (
𝑠𝑗

log(𝑑𝑗 + 2)
)

𝐽

𝑗=0

 

Where D is the overall device severity score, J is the number 

of vulnerabilities in a system, sj represents the severity of a 

specific vulnerability within the device (determined by the 

CVSS score for the vulnerability), dj is the # of days since the 

most relevant exploit for the vulnerability sj was posted, 

creating a decaying effect of the inverse log function. The 

most relevant exploit for a vulnerability is determined by the 

EVA-DSSM. A vulnerability’s severity score is divided by the 

log of the number of days elapsed since the most relevant 

exploit for that vulnerability was posted (a decaying function). 

Severities receive a higher weighting in the metric if the 

vulnerability’s most relevant exploit is newer. The inverse log 

best captures the exponential loss of value detailed in prior 

CTI literature (Mell et al., 2007). All vulnerability score and 

hacker exploit age pairs for a device are summed to create 

DVSM. A device’s overall score is higher if it has more severe 

vulnerabilities or newer exploits for vulnerabilities.  

Technical Benchmark Experiments 

Consistent with computational design science principles 

(Rai, 2017) and DL fundamentals (Samtani et al., 2020b), 

we evaluated the proposed EVA-DSSM with three technical 

benchmark experiments: (1) EVA-DSSM vs. conventional 

short text matching algorithms, (2) EVA-DSSM vs. deep 

learning-based short text matching algorithms, and (3) EVA-

DSSM sensitivity analysis. We describe each benchmark 

method included in each experiment in Table 9.  

In Experiment 1, we examined EVA-DSSM’s performance 

against conventional non-DL approaches based on direct 

matching (simple matching), distributional semantics (LSA), 

probabilistic matching (BM25), and term frequency (TF-IDF) 

approaches. Experiment 2 examined EVA-DSSM’s 

performance against state-of-the-art DL-based short text 

matching algorithms proposed in neural IR academic literature. 

Each algorithm is based on DNN (aNMM, DSSM, DRMM, 

DUET), CNN (ARC-I, ARC-II, KNRM, Conv-KNRM), and/or 

LSTM (Match-LSTM, MV-LSTM) operations. We also 

evaluated a variation of the EVA-DSSM (EVA-DSSM-2) 

where the context attention operates on the exploit, and self-

attention operates to create a focused vulnerability embedding.  

The EVA-DSSM model used for Experiments 1 and 2 uses 

letter trigrams, a one-layer Bi-LSTM, two attention 

mechanisms (context vector and self-attention), and two dense 

layers. However, each EVA-DSSM model component can be 

varied. Therefore, Experiment 3 evaluated EVA-DSSM’s 

sensitivity to word hashing, LSTM processing, attention 

mechanisms, and network depth. With regards to the word 

hashing and Bi-LSTM processing, the conventional DSSM 

uses letter trigrams and a feed-forward layer instead, 

respectively. However, vulnerability and hacker exploit names 

contain non-natural language content and sequential 

dependencies. Identifying word hashing and LSTM processing 

sensitivities can aid future DSSM research operating on non-

natural language. Therefore, we evaluated EVA-DSSM’s 

performance when using letter bigrams, letter trigrams, letter 4-

grams, and word n-grams. We also evaluated EVA-DSSM’s 

performance when EVA-DSSM uses an LSTM layer (as seen 

in Wan et al. (2016) and Wang and Jiang (2017)) instead of a 

Bi-LSTM layer. Both LSTM layer types are tested at one-layer 

and two-layer variations. With respect to the attention 

mechanisms, we examined how EVA-DSSM performs when 

using only one attention mechanism at a time. We also 

evaluated EVA-DSSM’s performance when using one, two, or 

three dense layers. Across all variations, only one model 

component is varied at a time; the remainder of the model 

remained the same. 
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Table 9. Summary of Technical Benchmark Experiments 

Experiment Benchmark 
methods 

Brief description of operations Reference(s) 

Experiment 1: 
EVA-DSSM 
vs. 
Conventional 
Short Text 
Matching 
Algorithms 

BM25 Probabilistic bag-of-words retrieval function that uses term 
frequencies. 

Robertson et 
al. 1995 

LSA Calculates the semantic similarity based on distributional 
semantics. 

Deerwester et 
al. 1990 

Simple matching Directly matches two short texts by counting same appearances.  - 

TF-IDF Short texts are weighted based on term frequency within and 
across the corpus.  

Saltyon and 
Buckley 1988 

Experiment 2: 
EVA-DSSM 
vs. 
Deep 
learning-
based short 
text matching 
algorithms 

aNMM Matching matrix captures text interactions, and an attention 
mechanism weights interactions. 

Yang et al. 
2018 

DSSM Standard, seminal DSSM architecture.  Huang et al. 
2013 

DRMM Builds matching histograms of interactions between query term 
and document. MLP and query term gates match short texts. 

Guo et al. 2016 

DUET Combines local exact matching and semantic embedding using 
parallel local and distributed neural models. 

Mitra et al. 
2017 

ARC-I Siamese CNNs represent sentences; MLP conducts matching. Hu et al. 2014 

ARC-II Sentences interact by a 1D convolution. A 2D CNN represents 
sentences, and a MLP matches. 

KNRM Translation matrix models word-level similarities. Kernel-pooling 
extracts multi-level features. Ranking layer conducts ranking. 

Xiong et al. 
2017 

Conv-KNRM A KNRM that uses convolutional and pooling layers. Dai et al. 2018 

Match-LSTM Represents and matches input texts using multiple LSTM layers. Wang and 
Jiang 2017 

MV-LSTM Bi-LSTMs represent input sentences, similarity k-max functions 
aggregate interactions, and an MLP matches representations. 

Wan et al. 
2016 

EVA-DSSM-2 Same as EVA-DSSM, but the left branch focuses on exploit text 
and the right branch on vulnerability text 

- 

Experiment 3: 
EVA-DSSM 
sensitivity 
analysis** 

Letter bigrams Letter bigram representation (e.g., buffer → #b, bu, ff, fe, er, r#) Huang et al. 
2013 

Letter trigrams Letter trigram representation (e.g., buffer → #bu, uff, ffe, fer er#) 

Letter 4-grams Letter 4-gram representation (e.g., buffer → #buf, uffe, ffer, fer#) 

Word n-grams Word n-gram representation (e.g., buffer overflow → buffer, 
overflow) 

Bi-LSTM layer Swapping out a Bi-LSTM with an LSTM layer Wan et al. 
2016; Wang 
and Jiang 2017 

Attention 
mechanism 

Removing either the context attention layer or the self-attention 
mechanism 

Du et al. 2019 

Quantity of dense 
layers 

Varying the quantity of dense layers (1, 2, or 3) after the context 
embedding in the EVA-DSSM 

- 

Note:  

*aNMM = attention neural matching model; ARC-I = architecture-I; ARC-II = architecture-II; BM25 = best matching 25; CNN = convolutional 
neural network; DRMM = deep relevance matching model; KNRM = kernel-based neural ranking model; LSA = latent semantic analysis; LSTM 
= long-short term memory; MLP = multilayer perceptron; TF-IDF = term frequency inverse document frequency. 

** Given that Experiment 3 is an internal evaluation (i.e., varying model components), no statistical significance was conducted. This is consistent 
with deep learning studies presented in recent IS literature (Zhu et al., 2020; Zhu et al., 2021) and best practices (Samtani et al., 2020b) 
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Executing benchmark evaluations requires a ground-truth 

dataset (Nunamaker et al., 1990; Hevner et al., 2004; Peffers et 

al., 2007). This dataset is also commonly referred to as a gold-

standard dataset in past IS studies at top journals, as it comprises 

all correct instances that are representative of the phenomena 

being studied (Abbasi & Chen, 2008; Abbasi et al., 2018). To 

build our gold-standard dataset, we leveraged the CVE metadata 

available in hacker forums and vulnerability assessment data. In 

our datasets, 163 / 10,368 of web application exploits, 348 / 

2,602 remote exploits, 230 / 2,399 local exploits, and 445 / 2,683 

DoS exploits have CVEs. When linked to their CVE 

vulnerability counterparts, this resulted in 673 unique 

vulnerabilities for web application exploits, 1,806 for remote, 

1,326 for local, and 1,877 for DoS. While this quantity was not 

high enough (<10% total) to warrant using them exclusively for 

creating vulnerability-exploit linkages (thus necessitating and 

further motivating EVA-DSSM), it was enough to develop a 

gold-standard dataset. Specifically, the 163-673 exploit-

vulnerability combinations resulted in 1,208 unique exploit-

vulnerability pairs in the web applications dataset, the 230-1,326 

created 2,193 for local exploits, the 348-1,806 created 3,800 

pairs in the remote exploits, and 442-1,877 created 3,445 for 

DoS. These unique combinations were all labeled as relevant 

(i.e., tagged with 1). To validate the labels, we recruited a 

seasoned SOC security analyst from a well-known, international 

healthcare organization. For this task, we presented the datasets 

individually to the security analyst without the label and asked 

the analyst to label the exploit-vulnerability pair as 1 for relevant 

or 0 for irrelevant. The analyst was presented with the exploit 

name, exploit category, vulnerability name, and vulnerability 

description to make a fully informed labeling decision. We 

computed the Cohen’s kappa statistic between the rating 

provided by the analyst and the dataset generated from linking 

CVE’s. The Cohen’s kappa statistics for the web application, 

remote, local, and DoS datasets were 0.97, 0.96, 0.98, and 0.94, 

respectively. Given this near-perfect agreement between the 

analyst and the labels provided by the hacker exploit forum 

community and vulnerability assessment, we used these as the 

relevant labels for algorithm training, tuning, and testing. 

Gold-standard datasets commonly used in DSSM literature often 

have 3-4 irrelevant instances (each labeled as 0) for every 

relevant instance (Huang et al., 2013). Therefore, the final 

dataset would include each exploit in a unique exploit-

vulnerability pair five times—once for relevant, four for 

irrelevant. Unlike the relevant pairs that can be linked based on 

CVE, there are no clear labels provided in hacker forums about 

which vulnerabilities the exploits do not target. Therefore, we 

designed a custom script that examined the family name (50+, 

including Windows, Linux, and PHP) for the vulnerability in 

each relevant exploit-vulnerability pair to create four additional 

exploit-vulnerability pairs that were irrelevant. Once we 

identified the vulnerability family within the relevant pair, the 

script randomly selected four vulnerabilities from families 

outside of the one provided in the relevant pair. To ensure the 

quality of our script-generated labels, we recruited the same 

analyst from earlier, as well as a cybersecurity instructor with 

significant systems development experience. Each annotator 

was provided the irrelevant pairs without the label and asked to 

label them as 1 for relevant, and 0 for irrelevant. All annotations 

were completed separately to reduce social-desirability bias. 

Labeling efforts occurred over a three-week period. Both raters 

were presented with the exploit name, exploit category, 

vulnerability name, and vulnerability description without the 

label. Raters were instructed not to complete more than 2,000 

ratings within a two-hour period.  

We used Cohen’s kappa to compute the level of agreement 

between ratings. After the first round of annotation, the Cohen’s 

kappa between the raters resulted in 0.69, 0.72, 0.77, and 0.76 

for the web application, remote, local, and DoS datasets, 

respectively. Both raters then met to discuss differences. After 

discussions, we identified the irrelevant links both raters 

disagreed on and altered our initial script to generate random 

pairs to replace these instances. The annotators were instructed 

to label the regenerated irrelevant pairs. In the second round of 

annotation, the Cohen’s kappa resulted in 0.89, 0.92, 0.93, and 

0.88 for the web application, remote, local, and DoS datasets, 

respectively. The overall testbed contained 52,590 total pairs. 

Adhering to best practices, each set was split using an 80%, 10%, 

10% ratio across training, tuning (development), and testing 

subsets, respectively (Mitra & Crasswell, 2018). We summarize 

unique exploit and vulnerability counts, the total counts of 

exploit-vulnerability pairs, and the sizes of the training, 

development, and testing sets for each gold-standard dataset in 

Table 10.  

Overall, the web applications dataset contained a total of 5,400 

pairs (163 unique exploits and 673 unique vulnerabilities), the 

local dataset contained 10,965 pairs (230 unique exploits and 

1,326 unique vulnerabilities), the remote dataset contained 

19,000 pairs (348 unique exploits and 1,806 unique 

vulnerabilities), and the DoS dataset contained 17,225 pairs (442 

unique exploits and 1,877 unique vulnerabilities). To illustrate 

examples of what was included in our gold-standard datasets, we 

report sample relevant and irrelevant exploit-vulnerability pairs 

for each dataset in Table 11.  

In addition to establishing a gold-standard dataset, conducting 

benchmark experiments requires appropriate and well-

established metrics and statistical tests to evaluate the 

performance of the baseline algorithms (Rai, 2017). In this 

research, we employed three performance metrics that are 

commonly used to evaluate DSSMs (Mitra & Crasswell, 2018): 

Normalized discounted cumulative gain (NDCG) at 1, 3, and 5; 

mean reciprocal rank (MRR); and mean average precision 

(MAP). A description and formulation for each metric is 

presented in Table 12.  
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Table 10. Summary of Gold-Standard (i.e., Ground-Truth) Datasets* 

 Web applications Local Remote DoS 

 Exploit Vulnerability Exploit Vulnerability Exploit Vulnerability Exploit Vulnerability 

Unique 163 673 230 1,326 348 1,806 442 1,877 

Total Exploit-
Vulnerability 
Pairs 

1,208 Relevant Pairs 
4,832 Irrelevant Pairs 
Total: 5,400 

2,193 Relevant Pairs 
8,772 Irrelevant Pairs 
Total: 10,965 

3,800 Relevant Pairs 
15,200 Irrelevant Pairs 
Total: 19,000 

3,445 Relevant Pairs 
13,780 Irrelevant Pairs 
Total: 17,225  

Training 4,320 8,771 15,200 13,759 

Development 540 1,097 1,900 1,733 

Testing 540 1,097 1,900 1,733 

Note: * The size of each dataset exceeds the size used in many past IS studies.    

 

Table 11. Examples of Labeled Relevant and Irrelevant Exploit-Vulnerability Pairs in the Constructed 
Gold-Standard (i.e., Ground Truth) Datasets 

Dataset Exploit name Relevant vulnerability Irrelevant vulnerability 

Web 
applications  

MoinMoin 1.9.8 Cross Site Scripting 
Vulnerability  

FreeBSD: moinmoin -- XSS 
vulnerabilities  

Fedora 20: tcpdump-4.5.1-2.fc20 
(2014-15541)  

PHPMailer 5.2.20 - Remote Code 
Execution Exploit 

FreeBSD: phpmailer -- 
Remote Code Execution  

CentOS 6: mysql (CESA-
2017:0184) 

Trend Micro InterScan Web 
Security Virtual Appliance 6.5 SP2 - 
Multiple Vulnerabilities  

Trend Micro IWSVA 6.5 < 6.5 
Build 1746 Multiple 
Vulnerabilities  

Adobe AIR for Mac & 20.0.0.204 
Multiple Vulnerabilities (APSB16-
01)  

Local  DirtyCow Linux Kernel Race 
Condition Exploit  

SUSE SLES12 Security 
Update: kernel (Dirty COW)  

Cisco UCS Director Code 
Injection (Shellshock)  

Linux Kernel (Ubuntu / Fedora / 
Redhat) - “Overlayfs” Privilege 

Escalation Exploit  

Ubuntu 12.04 LTS: linux 
regression (USN-2640-2)  

MS16-014: Security Update for 
Microsoft Windows to Address 

Remote Code Execution  

Perl 5.20.1 Deep Recursion Stack 
Overflow Vulnerability  

Mandriva Linux Security 
Advisory: perl  

AIX 7.1 TL 1: libodm (IV60312)  

Remote  ElasticSearch Search Groovy 
Sandbox Bypass Exploit  

Elasticsearch Groovy Script 
RCE  

RHEL 5 / 6: php (RHSA-
2013:1824)  

JIRA Issues Collector Directory 
Traversal Exploit  

Atlassian JIRA & 6.0.4 
Arbitrary File Creation  

FreeBSD telnetd Daemon Remote 
Buffer Overflow  

Apache Struts ClassLoader 
Manipulation Remote Code 
Execution Exploit  

Apache Struts 2 class 
Parameter ClassLoader 
Manipulation  

Fedora 22: fuse-2.9.4-1.fc22 
(2015-8756)  

DoS  Varnish Cache Server Denial of 
Service  

Amazon Linux AMI: varnish 
(ALAS-2014-276)  

CentOS 6: java-1.6.0-openjdk 
(CESA-2013:0605)  

Bind 9 DNS Server - Denial of 
Service Exploit 

Debian DSA-3680-1: bind9 - 
security update 

TWiki debugenableplugins 
Parameter RCE 

OpenSSH 7.2 - Denial of Service 
Exploit 

Debian DLA-594-1: openssh 
security update 

Apple TV & 9.2 Multiple 
Vulnerabilities 

 

Table 12. Summary of Performance Metrics Used for Benchmark Experiments 

Metric Metric description  Formulation 

Normalized discounted 
cumulative gain (NDCG) 

at 1, 3, and 5 

NDCG measures ranking quality. It identifies how closely the 
ranked vulnerabilities match the gold-standard set. In our 

experiments, it identified quality at ranks 1, 3, and 5.  
𝑁𝐷𝐶𝐺 =

1

𝑀
∑ (

𝐷𝐶𝐺𝑢@𝑝

𝐼𝐷𝐶𝐺𝑢@𝑝
)

𝑀

𝑖=1

 

Mean reciprocal rank 
(MRR) 

Average of the reciprocal rank (multiplicative inverse of the 
rank for the first correct answer) of all results for a sample of 
queries (in this study, exploits). 

𝑀𝑅𝑅 =
1

|𝑄|
∑ (

1

𝑟𝑎𝑛𝑘𝑖
)

|𝑄|

𝑖=1

 

Mean Average Precision 
(MAP) 

MAP first calculates average precision at multiple ranks (e.g., 
at P@1, P@3, P@5, etc.), then the mean of all average 

precision scores form MAP. 

𝑀𝐴𝑃 =
∑ 𝐴𝑣𝑒𝑃(𝑞)

𝑄
𝑞=1

𝑄
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Given our goal of retrieving the most relevant exploit for a 

vulnerability, NDCG@1 and MAP (and its constituent P@1), 

hold the most importance for evaluating algorithm 

performance. Each algorithm used the training sets for model 

training, the development set for model tuning, and the test set 

for measuring model performance. Each algorithm was run 

ten times for all metrics. Performances across the ten runs 

were averaged and reported. Paired t-tests were used to 

calculate statistically significant differences between EVA-

DSSM’s performance and benchmark algorithms. All 

experiments were conducted on a single Ubuntu Linux 

16.04.3 LTS server with 132GB of random access memory 

(RAM), a NVIDIA GeForce GTX 1080 Ti graphical 

processing unit (GPU), an Intel central processing unit (CPU) 

E5-2640 v4 at 2.40 gigahertz (GHz), and a four terabytes of 

disk space.  

Case Studies with Expert Evaluations of 
Usefulness  

Case studies with expert evaluations of usefulness can 

demonstrate proof of concept, usability, usefulness, and the 

potential value of a novel technical approach (Nunamaker et al., 

1990; Hevner et al., 2004). The practical value of the EVA-

DSSM and DVSM (the two main contributions of this work) 

would ideally be illustrated on the external and internal 

networks within an organization. However, many firms are 

hesitant to disclose their vulnerabilities and the exploits against 

them, preferring instead to keep this knowledge classified. 

Therefore, we demonstrate the proof of concept of our research 

with case studies on publicly accessible devices from the top 

eight U.S. hospitals and from SCADA devices deployed 

worldwide. Both domains are common targets for malicious 

hackers. Hospitals often contain significant sensitive medical 

records that can net substantial revenue on DarkNet 

Marketplaces (Ayala, 2016). SCADA devices control modern 

infrastructure including power plants, sewage systems, 

transportation services, and more. Hackers often target such 

devices to severely cripple societal operations. The steps to 

execute each case study mimic the process a cybersecurity 

professional can implement in using the EVA-DSSM and 

DVSM in their workflow:  

• Step 1 (IP address identification): For hospitals, we 

identified hacker exploits for vulnerabilities on the 

externally facing networks of the top eight U.S. hospitals 

as ranked by the 2017 U.S. News and World Report: (1) 

Mayo Clinic, (2) Cleveland Clinic, (3) Massachusetts 

General, (4) Johns Hopkins, (5) University of California, 

Los Angeles (UCLA) Medical Center, (6) New York 

Presbyterian, (7) University of California, San Francisco 

(UCSF) Medical Center, and (8) Northwestern Memorial. 

Shodan, a search engine that discovers publicly accessible 

Internet-of-Things (IoT) devices, then finds all devices 

available on each hospital’s IP range. For the SCADA 

case study, we retrieved 20,641 SCADA devices and their 

IPs from Shodan using SCADA-specific vendor 

keywords (e.g., Rockwell, Siemens, and Schneider). 

Retrieving SCADA devices in this fashion is consistent 

with past vulnerability assessment literature (Samtani et 

al., 2016; El et al., 2017; Samtani et al., 2018). 

• Step 2 (vulnerability assessment): Consistent with best 

practices, we used Nessus, a state-of-the-art vulnerability 

assessment tool, to discover the vulnerabilities of each 

device without port scanning and payload dropping. 

Scanning for vulnerabilities in this fashion has been noted 

in past literature to avoid adverse events (e.g., downtime) 

(Harrell et al., 2018; Williams et al., 2017; McMahon et 

al., 2017; McMahon et al., 2018; Lazarine et al., 2020; 

Ullman et al., 2020). 

• Step 3 (exploit-vulnerability linking via EVA-DSSM): 

After identifying vulnerabilities, EVA-DSSM determined 

the most relevant hacker exploit for each vulnerability. To 

emulate a cybersecurity analyst’s workflow (Farris et al., 

2018), we only considered the top linked exploit for 

DVSM.  

• Step 4 (risk management via DVSM): After creating 

exploit-vulnerability links, we used the metadata from the 

exploit (post date) and vulnerability (CVSS score) for 

each exploit-vulnerability pair for each device. The 

DVSM score for each device is computed using these 

data. The final outputted DVSM values are ranked in 

descending order to help facilitate vulnerable device 

prioritization. 

The exploit-vulnerability linkages identified by EVA-DSSM 

and the DVSM scores can offer cybersecurity experts an 

excellent starting point for their mitigation and remediation 

activities. However, it is impossible to validate whether the 

EVA-DSSM exploit can take advantage of the detected 

vulnerability without executing the exploit. Such an act has 

significant legal and ethical ramifications. Moreover, even if 

vulnerabilities were susceptible to detected exploits, the 

usefulness and value of these linkages may vary within and 

between organizations due to technical capabilities, security 

priorities, and organizational policies. Therefore, we aimed 

to conduct a complementary user evaluation that aimed to 

ascertain how useful cybersecurity professionals find the 

results of our proposed EVA-DSSM and DVSM compared 

to results outputted from baseline approaches (e.g., DSSM 

and CVSS). To execute this evaluation, we sent over 60 

email invitations through our university’s cybersecurity 

centers to identify cybersecurity experts that were willing to 

evaluate the usefulness of our proposed approaches. In total, 
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45 cybersecurity experts responded to the invitation. Each 

expert possessed at least five years of experience in roles 

pertaining to security operations centers (SOCs), incident 

response (IR), vulnerability management, Dark Web 

analytics, IT audit, and/or operational cybersecurity. Each 

position would likely use EVA-DSSM and DVSM in their 

professional practice. No incentive or compensation was 

provided for the participant, since the time commitment was 

expected to be less than 15-20 minutes.  

We instructed each cybersecurity expert to evaluate the perceived 

usefulness of the exploit-vulnerability pairs generated from the 

EVA-DSSM against those generated from benchmark 

approaches (e.g., DSSM). For each generated exploit-

vulnerability pair, we also asked each expert to evaluate the 

usefulness of the DVSM against CVSS. Following common 

practice in IS literature (Abbasi et al., 2018; Chau et al., 2020), 

we adapted items pertaining to perceived usefulness from Davis 

(1989), Davis et al. (1989), and Venkatesh et al. (2003). For the 

exploit-vulnerability pair, the experts were asked if “the exploit-

vulnerability link is useful for identifying what exploit could 

target this vulnerability.” The experts were also asked if “the risk 

score is useful to prioritize exploit-vulnerability pairs more 

effectively” for the DVSM and CVSS scores. Adapting items in 

this fashion helps ensure the face validity of the items as well as 

correctly measure the phenomena of interest (i.e., construct 

validity) (Abbasi et al., 2018; Chau et al., 2020). For both items, 

we asked the experts to provide their responses on a scale of 1-7 

(with 1 being strongly disagree and 7 being strongly agree). 

Exploit-vulnerability pairs with their associated severity scores 

were randomly interspersed and blinded (i.e., no details were 

provided about which algorithm or severity metric produced the 

results) for the hospital and SCADA case studies. The experts 

were not allowed to consult with each other to avoid biases. We 

calculated the mean for each item and used a paired t-test to 

identify if a statistically significant difference between our 

proposed approach and the benchmark (i.e., EVA-DSSM vs. best 

performing method and DVSM vs. CVSS) existed. The results of 

this complementary evaluation are presented in Appendix A.  

Results and Discussion 

Experiment 1 Results: EVA-DSSM vs. 
Conventional Short Text Matching Algorithms 

In Experiment 1, we evaluated EVA-DSSM against four 

prevailing non-DL short text matching algorithms: BM25, 

LSA, simple matching, and TF-IDF. All models were evaluated 

based on MAP, MRR, and NDCG ranks of 1, 3, and 10. We 

present the average performances (across ten runs) for each 

algorithm on each dataset in Table 13. The highest scores for 

each dataset and metric are highlighted in bold font.  

EVA-DSSM outperformed non-DL short text matching 

algorithms in NDCG (at all levels), MRR, and MAP. The 

differences in average performances between the EVA-DSSM 

and the next best performing algorithm BM25 ranged between 

0.0509 (0.3842 for EVA-DSSM vs. 0.3333 for BM25) on the 

DoS dataset to 0.4214 (0.6714 for EVA-DSSM vs. 0.2500 for 

BM25) on the local dataset. The simple matching approach was 

consistently one of the poorest performing algorithms across all 

datasets, attaining NDCG@1 scores between 0.0314 to 0.1822. 

The differences between EVA-DSSM’s performances and each 

of the benchmark methods were statistically significant at p-

value thresholds of 0.05, 0.01, and 0.001 for each metric. These 

results suggest that EVA-DSSM’s attention mechanisms 

combined with feed-forward, backpropagation, and error 

correction enable the model to identify finer-grained linguistic 

patterns within exploit and vulnerability names that benchmark 

methods miss. To better quantify EVA-DSSM’s performance 

against the benchmark algorithms, we calculated the number of 

instances where the algorithm correctly matched a vulnerability 

to an exploit on the first link by multiplying each algorithm’s 

best Precision @ 1 (P@1) score by the total number of instances 

in each testing dataset (denoted as n in Table 14). P@1 was 

calculated based on the MAP metric. We present the P@1 score 

as a percentage (calculated by multiplying an algorithm’s P@1 

score by 100) and the number of correct instances in Table 14. 

Top performances for each dataset are highlighted in bold. 

EVA-DSSM achieved a significantly higher P@1 score over 

the benchmark methods in all datasets. In the web dataset, 

EVA-DSSM correctly identified 145 (423-278) more links 

(26.87% [78.40%-51.53%] increase) than the closest 

performing benchmark, BM25. EVA-DSSM showed similar 

performance gains in the local dataset (EVA-DSSM detected 

459 [853-394] more instances than BM25 for a 41.83% 

[77.75%-35.92%] increase), remote dataset (EVA-DSSM 

correctly identified 694 [1,413-719] more instances than 

BM25 for a 36.51% [74.36%-37.85%] increase), and DoS 

dataset (EVA-DSSM detected 359 [1,019-660] more 

instances than BM25 for a 20.74% [58.84%-38.10%] 

increase). These differences were more pronounced for other 

competing algorithms (e.g., simple matching). Overall, these 

results indicate that EVA-DSSM’s grounding in DL helps it 

capture linguistic cues within the exploit and vulnerability 

names that are missed by direct and probabilistic matching-

based approaches. To better identify what EVA-DSSM 

detected over benchmark methods, we illustrate a sample 

exploit-vulnerability link in each test dataset that EVA-DSSM 

correctly identified but was missed by the best competing 

approach (BM25 for each dataset) in Table 15. We also 

illustrate the exploits linked by the simple word matching 

approach in each dataset. The exploits appearing in bold were 

correct (i.e., listed as relevant in the ground-truth dataset). 

Additional examples can be requested by contacting the lead 

author of this article. 
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Table 13. Experiment 1 Results: EVA-DSSM vs. Conventional Short Text Matching Algorithms 

Algorithm 
Web applications 

NDCG@1 NDCG@3 NDCG@5 MRR MAP 

BM25 0.2500*** 0.2573*** 0.4291*** 0.3747*** 0.3584*** 

LSA 0.1156*** 0.3301*** 0.4308*** 0.3846*** 0.4037*** 

Simple Matching 0.1142*** 0.3127*** 0.4139*** 0.3553*** 0.3998*** 

TF-IDF 0.1250*** 0.3394*** 0.4253*** 0.3659*** 0.4123*** 

Proposed EVA-DSSM  0.6570 0.7550 0.7944 0.7789 0.7932 

Algorithm 
Local  

NDCG@1 NDCG@3 NDCG@5 MRR MAP 

BM25 0.2500*** 0.3034*** 0.3938*** 0.3764*** 0.3060*** 

LSA 0.1275*** 0.3106*** 0.4314*** 0.3633*** 0.4141*** 

Simple Matching 0.1822*** 0.3307*** 0.4161*** 0.3915*** 0.4318*** 

TF-IDF 0.2000*** 0.3472*** 0.4209*** 0.4036*** 0.4400*** 

Proposed EVA-DSSM 0.6714 0.6905 0.7322 0.6953 0.7504 

Algorithm 
Remote 

NDCG@1 NDCG@3 NDCG@5 MRR MAP 

BM25 0.3030*** 0.3214*** 0.4543*** 0.3567*** 0.4467*** 

LSA 0.0393*** 0.2178*** 0.3254*** 0.2792*** 0.3132*** 

Simple Matching 0.0693*** 0.2215*** 0.3317*** 0.2839*** 0.3200*** 

TF-IDF 0.0714*** 0.2369*** 0.3425*** 0.2932*** 0.3336*** 

Proposed EVA-DSSM 0.5501 0.6730 0.6972 0.6852 0.7006 

Algorithm 
DoS  

NDCG@1 NDCG@3 NDCG@5 MRR MAP 

BM25 0.3333 0.3421*** 0.3843*** 0.4134*** 0.3762*** 

LSA 0.0719*** 0.1834*** 0.2318*** 0.2272*** 0.2754*** 

Simple Matching 0.0314*** 0.1363*** 0.1717*** 0.1788*** 0.2341*** 

TF-IDF 0.0351*** 0.1331*** 0.1923*** 0.1883*** 0.2408*** 

Proposed EVA-DSSM 0.3842 0.4314 0.4829 0.5394 0.5937 
Note: *p-value<0.05, **:p-value<0.01, ***:p-value<0.001 

 

Table 14. Quantities and Percentages Correct at P@1 for Top Exploit-Vulnerability Link* 

Algorithm Web applications (n=540) Local (n=1,097) Remote (n=1,900) Dos (n=1,733) 

P@1 % # correct P@1 % # correct P@1 % # correct P@1 % # correct 

Bm25 51.53% 278 35.92% 394 37.85% 719 38.10% 660 

Lsa 27.20% 146 25.15% 276 23.91% 454 23.85% 413 

Simple 
matching 

30.30% 163 30.20% 331 36.72% 698 18.62% 322 

Tf-idf 33.86% 182 33.55% 368 36.54% 694 21.05% 364 

Proposed 
EVA-DSSM 

78.40% 423 77.75% 853 74.36% 1,413 58.84% 1,019 

Note: *The # correct is calculated by multiplying the P@1 score of each algorithm by 100.  

 

Table 15. Example Exploit-Vulnerability Link Correctly Detected by EVA-DSSM but Missed by Best 
Competing Non-Deep Learning Approaches 

Dataset Selected 
vulnerability 

Model Top linked exploits 

Web 
applications 

Zend Framework / 
zend-mail 2.4.11 - 
Remote Code 
Execution Exploit 

Simple word 
matching 

MS15-080: Vulnerabilities in Microsoft Graphics Component 
Could Allow Remote Code Execution (3078662)  

BM25 MS09-050: Vulnerabilities in SMBv2 Could Allow Remote Code 
Execution  

EVA-DSSM  FreeBSD: phpmailer— Remote Code Execution  
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Local Systemd 228 - 
Privilege Escalation 
Vulnerability 

Simple word 
matching 

Debian DSA-2765-1: davfs2 - privilege escalation 

BM25 PHP 5.6.x < 5.6.30 Multiple DoS 

EVA-DSSM  PHP 7.1.x < 7.1.1 Multiple Vulnerabilities 

Remote SAP Solman 7.31 
Information 
Disclosure 
Vulnerability 

Simple word 
matching 

Triangle MicroWorks SCADA Data Gateway < 3.3.729 Heartbeat 
Information Disclosure (Heartbleed) 

BM25 Oracle Linux 5: bind (ELSA-2015-1514) 

EVA-DSSM  CentOS 6: squid34 (CESA-2017:0183) 

DoS Ubuntu 11.10/12.04 
- binfmt_script Stack 
Data Disclosure 
Vulnerability 

Simple word 
matching 

Ubuntu 10.04 LTS / 11.04 / 11.10 / 12.04 LTS: Firefox 
vulnerabilities (USN-1600-1) 

BM25 Ubuntu 16.04 LTS: linux, linux-snapdragon vulnerabilities  

EVA-DSSM  Ubuntu 12.04 LTS: linux-lts-quantal—Linux kernel hardware 
enablement from Quantal regression (USN-1704-2) 

The examples listed in Table 15 indicate that the simple 

matching and BM25 approaches directly match contents from 

the exploit and vulnerability texts and result in incorrect 

linkages. For example, the simple word matching in each 

dataset incorrectly retrieved exploits that had direct overlaps 

with listed vulnerabilities. For the web applications dataset, this 

was the phrase “remote code execution”; for the local dataset, 

this was the phrase “privilege escalation”; for the remote 

dataset, this was the phrase “information disclosure”; and for 

the DoS dataset, this was the term “Ubuntu.” The consistency 

of these issues across all four datasets indicates that simple 

matching approaches, while appearing to have some face 

validity for exploit-vulnerability matching because of 

overlapping technology names in exploit and vulnerability 

names, cannot capture the semantics or context of selected 

technology names that EVA-DSSM can. This is most 

pronounced on the web dataset. In the listed examples, the Zend 

framework in PHP and FreeBSD is commonly associated with 

the Linux operating system and the PHP. Our approach 

correctly identified these relationships, whereas the matching-

based approaches match simply on the appearance of the phrase 

“remote code execution.” Taken together, these results indicate 

that EVA-DSSM’s use of DL processing makes it more robust 

to noise and word variations and in its ability to identify 

semantic cues (e.g., technology frameworks) missed by 

prevailing non-DL short text matching algorithms.  

Experiment 2 Results: EVA-DSSM vs. Deep 
Learning-based Short Text Matching Algorithms 

In Experiment 2, we evaluated the performance of EVA-

DSSM against state-of-the-art DL-based short text matching 

algorithms. Eleven models were selected for benchmarking, 

including those based on feed-forward DNN, CNN, or 

LSTM. As in Experiment 1, all models were evaluated based 

on MAP, MRR, and NDCG ranks of 1, 3, and 5. All 

algorithm performances for each dataset are presented in 

Table 16. The highest performance scores for each dataset 

and metric are boldfaced. 

EVA-DSSM attained an NDCG@1 score of 0.6570 for the web 

applications dataset, 0.6714 on the local dataset, 0.5501 on the 

remote dataset, and 0.3342 on the DoS dataset. Each of these 

performances was statistically significant over all benchmark 

algorithms across each dataset except DRMM, DUET, Conv-

KNRM, and MV-LSTM in the remote dataset; however, EVA-

DSSM still attained higher performances than these algorithms. 

Apart from the standard DSSM, the DNN-based models 

(aNMM, DRMM, DUET) consistently attained the lowest 

NDCG@1 scores on each dataset. The CNN-based models 

(ARC-I, ARC-II, KNRM, Conv-KNRM) and LSTM-based 

models (Match-LSTM, MV-LSTM) attained stronger 

performances over the DNN-based variations. This indicates 

that leveraging convolutional or long-short term dependency 

operations captures cues within the input texts missed by 

assuming a bag-of-trigrams. EVA-DSSM’s outperformance of 

both CNN and LSTM-based methods suggests that 

incorporating attention mechanisms can help capture global 

relationships and semantics across exploit and vulnerability 

short texts missed by prevailing approaches. We quantified the 

number of instances where the algorithm correctly matched a 

vulnerability to an exploit on the first link by multiplying each 

algorithm’s best P@1 score by the total number of instances in 

each testing dataset (denoted as n in Table 17). Top 

performances for each dataset are highlighted in bold. 

EVA-DSSM achieved a higher P@1 score over the 

benchmark methods in all datasets. In the web application 

dataset, EVA-DSSM correctly identified 28 more instances 

than the original DSSM for a 5.20% increase. EVA-DSSM 

also demonstrated a similar performance gain in the remote 

dataset, where it detected 81 more links correctly than the 

closest benchmark, DRMM (4.24% increase).  
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Table 16. Experiment 2 Results: EVA-DSSM vs. Deep Learning-based Short Text Matching Algorithms 

Algorithm 
category 

Algorithm 
Web applications 

NDCG@1 NDCG@3 NDCG@5 MRR MAP 

DNN-based aNMM 0.3125*** 0.4527*** 0.5114*** 0.5075*** 0.4704*** 

DSSM 0.5968* 0.7325 0.7796 0.7468 0.7947 

DRMM 0.3619** 0.4874*** 0.5497*** 0.5156*** 0.5373*** 

DUET 0.0907*** 0.3489*** 0.4257*** 0.3704*** 0.3959*** 

CNN-based ARC-I 0.0906*** 0.3378*** 0.4275*** 0.3637*** 0.4042*** 

ARC-II 0.3250*** 0.4894*** 0.5410*** 0.5275*** 0.5405*** 

KNRM 0.5312** 0.6248** 0.6728** 0.6772** 0.6786* 

Conv-KNRM 0.5531** 0.6716* 0.6973* 0.7122 0.6864* 

LSTM-based Match-LSTM 0.1063*** 0.2906*** 0.4187*** 0.3606*** 0.3839*** 

MV-LSTM 0.4531*** 0.6416** 0.6648** 0.6481** 0.6473** 

Proposed EVA-
DSSM 

EVA-DSSM-2 0.6480 0.7224 0.7634 0.7561 0.7676 

EVA-DSSM 0.6570 0.7550 0.7944 0.7789 0.7932 

Algorithm 
Category 

Algorithm 
Local 

NDCG@1 NDCG@3 NDCG@5 MRR MAP 

DNN-based aNMM 0.3525*** 0.4421*** 0.5099*** 0.5229*** 0.4897*** 

DSSM 0.1700*** 0.2511*** 0.4242*** 0.3807*** 0.3606*** 

DRMM 0.4850*** 0.5837*** 0.6311*** 0.6388** 0.6188*** 

DUET 0.3725*** 0.4356*** 0.5231*** 0.5146*** 0.5268*** 

CNN-based ARC-I 0.3275*** 0.4152*** 0.4923*** 0.4754*** 0.4914*** 

ARC-II 0.4025*** 0.5010*** 0.5681*** 0.5646*** 0.5692*** 

KNRM 0.4000*** 0.4603*** 0.5389*** 0.5478*** 0.5155*** 

Conv-KNRM 0.5175*** 0.6455* 0.6723** 0.6696 0.6984** 

LSTM-based Match-LSTM 0.2300*** 0.3459*** 0.4389*** 0.4053*** 0.4485*** 

MV-LSTM 0.5325*** 0.5943*** 0.6483*** 0.6541* 0.6365*** 

Proposed EVA-
DSSM 

EVA-DSSM-2 0.6378* 0.6752 0.7127 0.6649 0.7441 

EVA-DSSM 0.6714 0.6905 0.7322 0.6953 0.7504 

Algorithm 
Category 

Algorithm 
Remote 

NDCG@1 NDCG@3 NDCG@5 MRR MAP 

DNN-based aNMM 0.4214*** 0.5453*** 0.5670*** 0.6009*** 0.5434*** 

DSSM 0.3339*** 0.5019*** 0.5579*** 0.5391*** 0.5722*** 

DRMM 0.5339 0.6420 0.6830 0.6943 0.6760* 

DUET 0.5232 0.6104** 0.6601* 0.6671 0.6061*** 

CNN-based ARC-I 0.2589*** 0.3683*** 0.4409*** 0.4384*** 0.4038*** 

ARC-II 0.3964*** 0.5450*** 0.5855*** 0.5999*** 0.5616*** 

KNRM 0.4571*** 0.5521*** 0.6152*** 0.6433** 0.5549*** 

Conv-KNRM 0.5411 0.6330* 0.6745* 0.7053 0.6553** 

LSTM-based Match-LSTM 0.1536*** 0.3220*** 0.4164*** 0.3881*** 0.4026*** 

MV-LSTM 0.5393 0.6250** 0.6549** 0.6831 0.6420** 

Proposed EVA-
DSSM 

EVA-DSSM-2 0.5478 0.6742 0.6936 0.6684 0.6992 

EVA-DSSM 0.5501 0.6730 0.6972 0.6852 0.7006 

Algorithm 
Category 

Algorithm 
DoS 

NDCG@1 NDCG@3 NDCG@5 MRR MAP 

DNN-based aNMM 0.1790*** 0.2691*** 0.3640*** 0.3969*** 0.3532*** 

DSSM 0.2632** 0.3625* 0.4079* 0.5011 0.4367** 

DRMM 0.2333** 0.2954*** 0.3493*** 0.4052** 0.3851*** 

DUET 0.1561*** 0.2388*** 0.2917*** 0.3179*** 0.3368*** 

CNN-based ARC-I 0.1176*** 0.2111*** 0.2717*** 0.2828*** 0.3233*** 

ARC-II 0.2053*** 0.2881*** 0.3395*** 0.3697*** 0.3864*** 

KNRM 0.2684** 0.3166*** 0.3461*** 0.3817*** 0.4002*** 

Conv-KNRM 0.2825** 0.3291*** 0.3913** 0.4293** 0.4468** 

LSTM-based Match-LSTM 0.2986* 0.3452* 0.4102* 0.4652 0.4472** 

MV-LSTM 0.2614** 0.3397** 0.4095* 0.4524* 0.4371** 

Proposed EVA-
DSSM 

EVA-DSSM-2 0.3801 0.4285 0.4881 0.5333 0.6009 

EVA-DSSM 0.3842 0.4314 0.4829 0.5394 0.5937 

Note: *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001 
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Table 17. Quantities and Percentages Correct at P@1 for Top Exploit-Vulnerability Link* 

Algorithm 
Category 

Algorithm 

Web Applications 
(n=540) 

Local (n=1,097) Remote (n=1,900) DoS (n=1,733) 

P@1 % 
# 

correct 
P@1 % 

# 
correct 

P@1 % 
# 

correct 
P@1 % # correct 

DNN-based ANMM 52.62% 284 41.82% 459 54.51% 1,036 30.52% 528 

DSSM 73.20% 395 66.91% 734 49.84% 947 46.33% 802 

DRMM 52.22% 281 39.25% 431 70.12% 1,332 40.63% 704 

DUET 33.21% 179 47.53% 521 64.65% 1,228 28.53% 494 

CNN-based ARC-I 27.73% 149 45.72% 502 40.60% 771 20.96% 363 

ARC-II 52.66% 284 51.42% 564 51.52% 979 35.86% 621 

KNRM 68.69% 370 50.89% 558 59.63% 1,133 44.87% 777 

Conv-KNRM 71.64% 386 60.69% 666 69.65% 1,323 47.60% 824 

LSTM-
based 

Match-LSTM 37.63% 203 41.77% 458 47.21% 897 48.50% 840 

MV-LSTM 67.99% 367 61.12% 671 60.22% 1,144 45.24% 784 

Proposed 
EVA-DSSM 

EVA-DSSM-2 78.22% 422 76.14% 835 72.32% 1,374 57.98% 1,004 

EVA-DSSM 78.40% 423 77.75% 853 74.36% 1,413 58.84% 1,019 

*The # correct is calculated by multiplying the P@1 score of each algorithm by 100.  

 
EVA-DSSM showed similar improvements for both the 

local and DoS datasets with 10.84% and 10.34% 

performance gains, respectively. In Table 18, we illustrate 

sample exploit-vulnerability linkages in each test dataset that 

EVA-DSSM correctly identified but were missed by the best 

competing approach for each dataset (DSSM for the web 

application and local datasets, DRMM for the remote dataset 

and Match-LSTM for the DoS dataset). The exploits 

appearing in bold were correct (i.e., listed as relevant in the 

ground-truth dataset). Additional examples can be requested 

by contacting the lead author of this article. 

The results suggest that the proposed EVA-DSSM captured the 

semantics of terms more effectively than benchmark 

approaches. In the web applications dataset, for instance, EVA-

DSSM correctly identified that “FreeBSD” was associated 

with the “Zend Framework.” Similarly, EVA-DSSM captured 

that “CentOS” term was more closely associated with “SAP 

Solman” (a technology that can run CentOS) than “Cisco 

Telepresence” in the remote dataset. These results indicate that 

EVA-DSSM’s ability to capture global relationships across 

input texts and iterative reweighting of features via the 

attention mechanisms helps capture finer-grained semantic 

overlaps than conventional approaches. The results also 

suggest that EVA-DSSM captured sequences of texts more 

effectively in the DoS dataset than Match-LSTM (capturing 

“Ubuntu” at the start of the exploit and vulnerability names). 

This indicates that the incorporation of the BiLSTM layer 

captures the location of particular terms more effectively than 

the LSTM-based counterpart.  

Experiment 3 Results: EVA-DSSM Sensitivity 
Analysis  

In Experiment 3, we aimed to identify EVA-DSSM’s 

sensitivity to word hashing, LSTM, the number of dense 

layers, and attention mechanism inclusion. As previously 

mentioned, standard word hashing segments input text into 

letter trigrams for natural language applications. However, 

cybersecurity text has non-natural terms such as version 

numbers, system names, and others. Experiment 3 examined 

the performance of utilizing letter bigrams, letter trigrams, 

letter 4-grams, and word n-gram for the EVA-DSSM. While 

concerns have been raised that hashing increases collisions 

(Huang et al., 2013) of identical letter n-grams, only the short 

text exploit and vulnerability names are hashed, not the 

underlying descriptions or discussions. Thus, the hashing 

collisions in our data are negligible (0.0058%) for all 

experiments. In addition to evaluating the performance of 

hashing variations, we also evaluated EVA-DSSM’s 

sensitivity to variations in the LSTM layers (one- and two-

layer LSTM and BiLSTMs), number of dense layers, and the 

removal of attention mechanisms. We present the results of 

Experiment 3 in Table 19; top performances of each 

variation are highlighted in bold. Across all datasets, the 

base EVA-DSSM model using letter trigrams, one-layer Bi-

LSTM, two dense layers, and self-attention and context 

attention mechanisms achieved the strongest performance. 

When considering the word hashing sensitivity analysis, the 

strong performance of letter trigrams is likely attributable to 

its ability to capture semantics that letter bigrams and word 

n-grams miss.  
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Table 18. Example Exploit-Vulnerability Linkages Correctly Detected by EVA-DSSM but Missed by Best 
Competing Deep Learning Approaches  

Dataset Vulnerability Model Top linked exploit 

Web 
applications 

Zend Framework / zend-mail 
2.4.11 - Remote Code 
Execution Exploit 

DSSM Oracle Linux 6: thunderbird (ELSA-2013-0821)  

EVA-DSSM  FreeBSD: phpmailer -- Remote Code Execution  

Local Systemd 228 - Privilege 
Escalation Vulnerability 

DSSM GLSA-201309-11: Subversion 

EVA-DSSM  PHP 7.1.x < 7.1.1 Multiple Vulnerabilities 

Remote SAP Solman 7.31 Information 
Disclosure Vulnerability 

DRMM Cisco TelePresence Video Communication Server 
Heartbeat Information Disclosure (Heartbleed)  

EVA-DSSM  CentOS 6: squid34 (CESA-2017:0183) 

DoS Ubuntu 11.10/12.04 - 
binfmt_script Stack Data 
Disclosure Vulnerability 

Match-LSTM RHEL 6: kernel (RHSA-2017:0316)  

EVA-DSSM  Ubuntu 12.04 LTS: linux-lts-quantal - Linux 
kernel hardware enablement from Quantal 
regression  

 

Table 19. Experiment 3 Results: EVA-DSSM Sensitivity Analysis 

EVA-DSSM variation 
Web applications Local 

NDCG@1 NDCG@3 NDCG@5 MRR MAP NDCG@1 NDCG@3 NDCG@5 MRR MAP 

Input text Letter bigrams 0.4976  0.6892  0.7022  0.6891  0.7355  0.5049  0.5844  0.6282  0.6578  0.6890  

Letter trigrams 0.6570  0.7550  0.7944  0.7789  0.7932  0.6714  0.6905  0.7322  0.6953  0.7504  

Letter 4-grams 0.6392  0.7684  0.7898  0.7753  0.7815  0.5663  0.6480  0.6742  0.6959  0.7098  

Word n-gram 0.4015  0.5310  0.5647  0.5856  0.6106  0.4837  0.5549  0.5997  0.5891  0.6240  

LSTM One Layer LSTM 0.6349  0.7258  0.7667  0.7710  0.7543  0.6125  0.6811  0.7172  0.7044  0.7340  

One Layer Bi-LSTM 0.6570  0.7550  0.7944  0.7789  0.7932  0.6714  0.6905  0.7322  0.6953  0.7504  

Two Layer LSTM 0.6601  0.7667  0.7890  0.7729  0.7967  0.6456  0.6909  0.7230  0.6948  0.7214  

Two Layer Bi-LSTM 0.6535  0.7458  0.7803  0.7414  0.7838  0.6810  0.7033  0.7349  0.7057  0.7310  

Dense 
layer 

One dense layer 0.6202  0.7135  0.7639  0.7733  0.7573  0.6489  0.7014  0.7280  0.7006  0.7332  

Two dense layers 0.6570  0.7550  0.7944  0.7789  0.7932  0.6714  0.6905  0.7322  0.6953  0.7504  

Three dense layers 0.6668  0.7424  0.7898  0.7830  0.7841  0.6631  0.6970  0.7185  0.7104  0.7459  

Attention Removing self-
attention 

0.6011  0.6754  0.6938  0.7042  0.7284  0.5716  0.6547  0.6834  0.6885  0.7078  

Removing context 
attention 

0.5327  0.6372  0.6566  0.6477  0.6890  0.5580  0.6246  0.6468  0.6599  0.6823  

Base EVA-DSSM Performance* 0.6570 0.7550 0.7944 0.7789 0.7932 0.6714 0.6905 0.7322 0.6953 0.7504 

EVA-DSSM variation 
Remote DoS 

NDCG@1 NDCG@3 NDCG@5 MRR MAP NDCG@1 NDCG@3 NDCG@5 MRR MAP 

Input text Letter bigrams 0.4850  0.5927  0.6289  0.6314  0.6425  0.2711  0.3765  0.4099  0.4522  0.4492  

Letter trigrams 0.5501  0.6730  0.6972  0.6852  0.7006  0.3842  0.4314  0.4829  0.5394  0.5937  

Letter 5-grams 0.5688  0.6689  0.6840  0.6841  0.6833  0.3901  0.4149  0.4670  0.5187  0.5573  

Word n-gram 0.4201  0.5317  0.5890  0.6013  0.5893  0.3055  0.3834  0.4258  0.4780  0.5058  

LSTM One Layer LSTM 0.5077  0.6439  0.6639  0.6750  0.6574  0.3422  0.4078  0.4361  0.5005  0.5379  

One Layer Bi-LSTM 0.5501  0.6730  0.6972  0.6852  0.7006  0.3842  0.4314  0.4829  0.5394  0.5937  

Two Layer LSTM 0.5392  0.6644  0.6858  0.6820  0.6715  0.3535  0.4144  0.4592  0.5196  0.5768  

Two Layer Bi-LSTM 0.5569  0.6698  0.6953  0.6872  0.7019  0.3720  0.4496  0.4797  0.5304  0.5880  

Dense 
layer 

One dense layer 0.5305  0.6590  0.6744  0.6616  0.6658  0.3671  0.4058  0.4485  0.4870  0.5564  

Two dense layers 0.5501  0.6730  0.6972  0.6852  0.7006  0.3842  0.4314  0.4829  0.5394  0.5937  

Three dense layers 0.5489  0.6683  0.6948  0.6839  0.6959  0.3864  0.4406  0.4760  0.5460  0.6017  

Attention Removing self-
attention 

0.5244  0.6277  0.6550  0.6618  0.6647  0.3437  0.4318  0.4552  0.5065  0.5580  

Removing context 
attention 

0.4597  0.5721  0.6014  0.6145  0.6338  0.3053  0.3822  0.4174  0.4768  0.5295  

Base EVA-DSSM Performance* 0.5501 0.6730 0.6972 0.6852 0.7006 0.3842 0.4314 0.4829 0.5394 0.5937 

Note: *The base EVA-DSSM uses letter trigrams, one layer Bi-LSTM, two dense layers, and both self-attention and context attention 
mechanisms. When conducting the sensitivity analysis, only one model component was varied at a time to identify the contribution of that model 
component to the overall EVA-DSSM. This is consistent with best practices in deep learning literature in prevailing IS journals (Zhu et al., 2020; 
Zhu et al., 2021). 
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Examining outputted results indicated that many exploit and 

vulnerability names contained three-letter acronyms such as 

“SSH” for Secure Shell, “PHP” for Hypertext Preprocessor, 

“XSS” for Cross-Site Scripting, and many others. These 

acronyms are key components of vulnerability and exploit 

names like “OpenSSH Security Bypass,” “SSH Cracker,” and 

“Casper PHP Trojan.” Letter bigrams create too small of a 

window (e.g., “PH” and “HP” for “PHP”), while word n-

grams create windows too large (e.g., “OpenSSH” instead of 

capturing just “SSH”). Letter trigrams create a window large 

enough to capture these key three-letter acronyms. When 

considering the Bi-LSTM sensitivity analysis, results 

indicated that using only the LSTM that processes in a single 

direction rather than two directions resulted in performance 

degradation. This is likely due to the nature of how sequential 

dependencies appear in exploit and vulnerability names. With 

regard to the dense layers, the performance increased when 

having two layers as opposed to one, but the differences were 

negligible when adding a third layer. However, removing 

either attention mechanism from the EVA-DSSM 

substantially reduced the performance. This performance 

decrease was most pronounced when removing the context 

attention, which dropped by nearly 15% in some cases. This 

indicates that the context attention’s ability to capture and 

weigh global relationships across input text significantly 

improves overall exploit-vulnerability linking.  

U.S. Hospital Case Study Results 

The vulnerability assessment of the top eight hospitals 

revealed that 344 / 1,879 (18.31%) of scanned devices have 

vulnerabilities, and 176 of those have multiple vulnerabilities, 

while the remaining 168 have only one. Vulnerabilities in the 

“Critical” threshold were due to outdated PHP, OpenSSL, or 

Unix versions. “High” and “Medium” had Apache, SQL, 

SSH, and XSS issues. Table 20 summarizes selected 

vulnerabilities in the “Critical,” “High”, and “Medium” levels. 

For each vulnerability, we list the most relevant exploit 

determined by EVA-DSSM.  

Vulnerabilities at the “Critical” risk level pertained to 

unsupported PHP, OpenSSL, and Unix technologies. Their 

associated exploits aimed to take advantage of common issues 

associated with unsupported technologies such as 

susceptibilities to injections, memory disclosures, and 

backdoors. Vulnerabilities in the “High” risk level were 

related to Apache vulnerabilities, with the most relevant 

exploit related to DoS. Finally, the vulnerabilities in the 

“High” risk level pertained to tracing HTTP methods and 

weak SSH algorithms. The number of devices afflicted with 

vulnerabilities increased as the risk level decreased. To 

identify the top devices that security analysts can prioritize for 

remediation, we calculated the DVSM for each device. For 

space considerations, we list only the top-ranked device on 

each hospital’s network in Table 21. We randomized the order 

in which they appear, as well as anonymized the last three 

octets of each hospital’s IP range and selected device to 

protect their privacy. 

Results indicate that SSH servers, web servers, Apple TV, 

and medical portals are vulnerable. All but one device had 

between two and six vulnerabilities due to web application, 

SSH, and outdated software issues. Hackers can potentially 

exploit these vulnerabilities with the linked exploits to gain 

a foothold into the hospital’s network (Weidman, 2014). The 

most susceptible device was an eCare portal on the 17x.x.x.x 

network (DVSM 61.761) that likely provides healthcare-

related services to patients. We depict the system’s interface, 

selected vulnerabilities, most relevant exploit name for each 

vulnerability, the individual severity score for each exploit-

vulnerability link, and the overall device vulnerability score 

in Figure 5. 

Nessus detected 47 vulnerabilities for the device hosting the 

“Partners eCare Portal.” After running the EVA-DSSM to 

create exploit-vulnerability linkages, the overall DVSM score 

resulted in 61.761. The large and diverse attack surface of this 

device increases its exploit probability. Vulnerabilities in this 

device include XSS, OpenSSL issues, buffer overflow, and 

DoS. This device also has a login form, indicating that it 

connects to a database. Hackers can exploit the form to access 

the underlying database and gain a foothold into the hospital’s 

network to pivot to other devices. Each weak point can allow 

an attacker to remotely take the system offline or hijack it for 

their own use (Weidman, 2014).  

SCADA Device Case Study Results 

The case study examining SCADA devices aims to illustrate 

how CTI professionals can apply our framework to identify 

systemic vulnerabilities and their relevant hacker exploits 

for a specific device category rather than multiple networks 

with a diverse set of devices. Nessus results for the SCADA 

case study found that 4,009/20,461 (19.59%) devices have 

“critical” (182), “high” (189), “medium” (2,737), or “low” 

(901) risks. Most vulnerabilities pertain to unencrypted 

telnet servers and SSH servers. We summarize these 

vulnerabilities, their severities, most relevant exploit name, 

number of affected devices and major afflicted vendors of 

devices containing these vulnerabilities in Table 22. 

Vulnerabilities that affect SCADA devices such as 

programmable logic controllers (PLCs) are from major 

vendors including Rockwell Automation, Siemens, and 

Schneider Electric. PLCs are computers that automate and 

monitor electromechanical processes such as electrical 

relays, hydraulics, and motors.  
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Table 20. Selected Hospital Vulnerabilities and Their Most Relevant Exploits Identified by the EVA-
DSSM 

Risk 
level 

Vulnerability names (severity) Top linked exploit name and its post date # of 
devices 

Critical “PHP Unsupported Version Detection” 
(10.0) 

“phpshop 2.0 Injection Vulnerability” (1/14/2013) 11 

“OpenSSL Unsupported” (10.0) “OpenSSL TLS Heartbeat Extension - Memory 
Disclosure” (4/8/2014) 

7 

“Unix OS Unsupported Version 
Detection” (10.0) 

“TCP/IP Invisible Userland Unix Backdoor with Reverse 
Shell” (6/30/2012) 

6 

High “Multiple Apache Vulnerabilities” (8.3) “Apache 2.4.17 - Denial of Service” (12/18/2015) 17 
Medium “HTTP TRACE / TRACK Methods 

Allowed” (5.0) 
“traceroute Local Root Exploit” (11/15/2000) 58 

“SSH Weak Algorithms” (4.3) “OpenSSH attack DoS” (7/4/2010) 55 

 

Table 21. Most Susceptible Device on Each Hospital’s Network 

Selected devices for each hospital Severity score information 

IP Range IP Address Device type # of 
Vulnerabilities 

Vulnerabilities DVSM 

12x.x.x.x 12x.x.x.x FTP/SSH Server 3 FTP issues 4.591 

19x.x.x.x 19x.x.x.x SSH Server 3 SSH issues 4.376 

17x.x.x.x 17x.x.x.x eCare web portal 47 XSS, DoS, OpenSSL, 
buffer overflow  

61.761 

16x.x.x.x 16x.x.x.x Medical computing 
portal 

5 PHP and SSH issues 4.863 

14x.x.x.x and 
14x.x.x.x 

14x.x.x.x Web server 3 SQL Injections 7.528 

 14x.x.x.x Apple TV 2 Buffer overflow 5.381 

14x.x.x.x 14x.x.x.x SSH/Web server 4 PHP and SSH issues 3.871 

6x.x.x.x 6x.x.x.x Informational diabetes 
portal 

3 Unix vulnerabilities 7.159 

16x.x.x.x 16x.x.x.x Web server 6 XSS 9.367 

 

 

Figure 5. Selected Vulnerabilities from Partners eCare Portal on the 17.x.x.x Hospital Network 

 

Table 22. Selected SCADA Vulnerabilities and their Most Relevant Exploits as Identified by the EVA-
DSSM 

Vulnerability name (severity) Exploit name (post date) # of afflicted devices Afflicted vendors 

“Unencrypted Telnet Server” 
(5.8) 

“Telnet-Ftp Server <= v1.218 
Remote Crash” (3/19/2012) 1,407 Rockwell Automation, 

Siemens, Schneider, Power 
Measurement, Acromag, 
Honeywell 

“Dropbear SSH Server 
Vulnerabilities” (5.0) 

“DropBear SSHD 2015.71 - 
Command Injection” (3/3/2016) 524 
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These components often appear in factories, industrial heating 

systems, and cooling units. Exploiting Telnet or SSH on these 

devices would allow hackers to remotely control, monitor, and 

alter communications to and from the system. The SSH botnet 

tool identified by the EVA-DSSM indicates that a skilled 

hacker can potentially exploit many PLCs simultaneously and 

turn them into bots to attack other targets. This kind of attack 

is not unprecedented: the Mirai malware infected hundreds of 

thousands of IoT devices to conduct a large-scale distributed 

denial of service (DDoS) against the internet’s DNS servers in 

2016 (Mathews, 2016). Many of the vulnerabilities detected 

in both case studies are addressable by following fundamental 

cyberhygiene. For example, Telnet is insecure by design; thus, 

it is recommended that users upgrade to more secure SSH 

clients. Outdated software issues related to PHP, Unix, and 

SSH can be mitigated by updating software.  

Contributions and Limitations 

In this paper, we carefully selected a relevant societal issue 

(automatic exploit-vulnerability linking) from a high-impact 

application environment (CTI) and searched for a solution 

space to identify and develop viable artifact designs (EVA-

DSSM and DVSM). We conducted rigorous evaluations and 

proof-of-concept case study demonstrations to illustrate the 

validity and potential practical utility of our approaches. In the 

ensuing subsections, we present the contributions to the IS 

knowledge base, practical implications, and limitations of this 

work.  

Contributions to the IS Knowledge Base 

To date, IS scholars have extensively studied behavioral 

compliance, risk management, security investments, and the 

market effects of cybersecurity. While there is a growing body 

of cybersecurity analytics research, past Dark Web-based CTI 

efforts have almost entirely relied on one data source only 

(e.g., forums) (Samtani et al., 2020a). Moreover, hacker 

exploit and vulnerability assessment data contain significant 

natural and non-natural text content that sharply contrasts with 

data sources used in extant IS cybersecurity research. 

Consequently, there is a significant need for novel 

computational IT artifacts that can fuse multiple cybersecurity 

data sources (e.g., Dark Web and vulnerability assessment) to 

facilitate proactive CTI. In this study, we make two major 

contributions to the IS knowledge base: the EVA-DSSM 

algorithm and the DVSM score. We further describe each 

contribution and its related implications below.  

EVA-DSSM Algorithm  

Algorithms developed through the lens of the computational 

design science paradigm should contribute back to the 

methodological knowledge base from where they originated 

(Hevner et al., 2004; Rai, 2017). In this study, we drew upon 

an emerging body of DL-based short text matching algorithms 

to achieve our goal of automatically linking exploit and 

vulnerability names. Despite the promise of existing DL-

based short text matching algorithms for our task, each extant 

algorithm relies on a single architecture (DNN, CNN, or 

LSTM) to represent and process input texts and often does not 

enhance the architecture with additional model components 

(e.g., attention mechanisms, highway networks, etc.) to 

improve model performance (Mitra & Crasswell, 2018). 

Against this backdrop, EVA-DSSM contributes a novel 

hybrid DL-based short text matching algorithm that integrates 

multiple architectures (Bi-LSTM and DNN) and emerging 

model components (attention mechanisms) to the growing 

body of short text matching algorithms. EVA-DSSM has three 

key design novelties:   

• First, the first dense layer in the DSSM is replaced with 

a Bi-LSTM layer. As a result, the EVA-DSSM captures 

sequential dependencies (in both forward and backward 

directions) from the input exploit and vulnerability 

names as opposed to bag of letter trigrams.  

• Second, EVA-DSSM includes a novel context attention 

layer to capture the global relationships across the 

exploit and vulnerability texts. Compared to the 

DSSM’s approach of processing each input text 

separately throughout the entire matching process, this 

attention layer aims to identify and weigh overlapping 

contents prior to the final embedding matching.  

• Finally, a self-attention mechanism is incorporated into 

the EVA-DSSM to weigh the vectors generated by the 

context attention layer. In contrast to DSSM not 

assigning weights to inputted texts or embeddings to 

improve exploit-vulnerability linking, the self-attention 

mechanism aims to iteratively re-weight embeddings to 

improve final matching performance.  

Rigorously evaluating EVA-DSSM against prevailing short 

text matching approaches on web application, remote, local, 

and DoS exploit testbeds reveals several key insights about 

EVA-DSSM’s design. First, the results of Experiment 1 

(EVA-DSSM vs. non-DL short text matching algorithms) 

suggest that EVA-DSSM’s basis in DL helped it capture 

semantics and word variations missed by algorithms with 

direct matching, distributional semantics, probabilistic 

matching, and term frequencies operations. Second, the results 

of Experiment 2 (EVA-DSSM vs. DL-based short text 

matching algorithms) suggest that EVA-DSSM’s 

incorporation of bidirectional text processing and attention 

mechanisms captures sequences of text and linguistic 

characteristics of exploit and vulnerability names that are 

missed by approaches based in DNNs, LSTMs, or CNNs. 
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Finally, the results of the EVA-DSSM sensitivity analysis 

suggest that the letter trigram hashing that EVA-DSSM 

employs captures windows of text (e.g., three-letter 

technology names) that help it consistently attain stronger 

performances than bigram, 4-gram, or word n-gram 

variations. Additionally, removing either attention mechanism 

resulted in a precipitous decline in performance.  

Since the EVA-DSSM extends the conventional DSSM for a 

new context (CTI), it falls into the exaptation quadrant of 

design science contributions (Gregor & Hevner, 2013). 

Although proposed for CTI, EVA-DSSM’s grounding in short 

text matching principles suggests that it could be applied in 

related short text matching tasks such as query-document title 

matching, question-answering systems, and dialog response 

(e.g., automated chatbots for customer service). Each task has 

been noted by IS scholars as holding significant potential for 

addressing key tasks in important application areas (Chen et 

al., 2012; Samtani et al., 2020). Since differences may exist 

between the domains that these short text matching tasks are 

deployed, we identified three important design implications 

(through the design and evaluation of the EVA-DSSM) that 

IS scholars can consider when exapting EVA-DSSM or 

designing their short text matching algorithm:  

1. Identifying appropriate short text representations: 

The results of Experiment 3 indicate that the manner in 

which input texts are represented (e.g., letter trigrams vs. 

word n-grams) affects overall matching performance. 

Therefore, future studies can consider capturing the 

semantics and structure of the input text based on the key 

characteristics and requirements of the domain they are 

studying; this could improve the performance of their 

DL-based algorithms for short text matching. Although 

letter trigrams were used in this study, other text 

representations that can be considered include 

associating named entities with each word, text graphs, 

and prematched grids.  

2. Integrating multiple DL architectures: It has been 

well-established in short text matching literature that 

DL-based algorithms outperform non-DL variants 

(Mitra & Crasswell, 2018). The results of our study 

indicate that integrating multiple DL architectures (Bi-

LSTM to capture sequential dependencies and DNN to 

generate embeddings for final exploit-vulnerability 

comparison) can lead to substantial improvements in 

performance over algorithms relying on a single DL 

architecture alone. Therefore, IS scholars can consider 

integrating multiple DL architectures (each assigned to 

conduct a particular processing task) for their short text 

matching applications.  

3. Extending base DL architectures: EVA-DSSM’s 

strong performance is largely attributable to extending 

its base Bi-LSTM and DNN architectures to operate 

with two attention mechanisms. When designing short 

text matching algorithms, scholars can consider 

extending their base model architecture with attention 

mechanisms and other emerging extensions to DL 

architectures (e.g., complex order embeddings, long 

short-range attention, and residual networks) to increase 

the model’s capacity to learn from the input data and 

improve overall matching performance.  

While these three considerations apply to many DL-based 

analytics, the results from our experiments suggest that they 

are especially important for attaining strong performance for 

our application of linking cybersecurity short texts.  

DVSM Score 

A key benefit of conducting multimodal analysis for 

cybersecurity is leveraging the metadata from heterogeneous 

data sources to construct specialized metrics to enhance 

cybersecurity decision-making (Samtani et al., 2020a). In this 

study, we proposed a novel DVSM score based on the exploit-

vulnerability links generated by the EVA-DSSM. DVSM 

improves the conventional CVSS score (and therefore falls 

into the improvement quadrant of design science 

contributions) by accounting for the age of the hacker exploits 

linked to each vulnerability based on EVA-DSSM results. An 

inverse log function discounts each exploit’s age to weigh 

newer exploits more heavily than older ones. All exploit-

vulnerability severity calculations for a device are aggregated 

to form an overall device level score. We discovered that 

cybersecurity experts found the DVSM more useful than the 

conventional CVSS for risk prioritization in both the U.S. 

hospital and SCADA systems case studies through a carefully 

designed user evaluation. Since DVSM is flexible to 

numerous extensions (e.g., accounting for asset criticality) 

based on the context and needs of an organization and its 

cybersecurity team(s), it holds important implications for 

designing enhanced vulnerability severity scores and 

facilitating targeted risk management activities.  

Practical Implications  

The proof-of-concept case studies on U.S. hospitals and 

SCADA systems helped demonstrate the potential practical 

utility of the EVA-DSSM and DVSM. Three major groups of 

stakeholders can potentially benefit from the proposed 

approaches: analysts in SOCs, IR teams, and cybersecurity 

operations vendors. We further describe the implications of 

this study for each major stakeholder group in turn.  
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Analysts in SOCs. The heart of cybersecurity efforts within 

enterprise-level organizations often resides in SOC 

environments. Analysts in SOCs are typically responsible for 

identifying and prioritizing vulnerabilities (often based on 

quantity, severity, and relevant exploits) on their 

organization’s networks. The number of devices (in the tens 

of thousands) and vulnerabilities (in the hundreds of 

thousands) that SOC analysts often manage can exceed human 

cognitive capacity and result in information overload. EVA-

DSSM can provide a unique capability for SOC analysts to 

automatically sift through large quantities of Dark Web and 

vulnerability data to produce targeted exploit-vulnerability 

linkages.  

IR Teams 

The responsibility of remediating vulnerabilities typically 

belongs to IR teams. However, the scale of devices on 

enterprise networks often requires selecting devices for 

remediation. The DVSM can help IR teams prioritize devices 

for immediate remediation. IR teams can also adjust the base 

DVSM formulation to closely reflect the characteristics of 

their asset base. The DVSM scores for various aspects of their 

environment (e.g., subnets, assets, vulnerabilities, etc.) can 

also be included in the reports (e.g., visualizations, threat 

feeds, reports, etc.) that IR teams generate for their chief 

information security officers (CISOs) and to external 

information sharing and analysis organizations. 

Cybersecurity Operations Vendors 

Many enterprise organizations have the resources to fund 

dedicated cybersecurity teams with SOC analysts and IR 

teams. However, many small and midsize businesses cannot 

fund their own teams and therefore rely on third-party 

cybersecurity operations vendors (e.g., FireEye) for their CTI 

activities (e.g., vulnerability scanning, risk prioritization, 

mitigation). Recent studies reviewing the CTI industry have 

indicated that Dark Web-based analytics are included in less 

than 15% of CTI platforms (Samtani et al., 2020d). 

Recognizing this opportunity, EVA-DSSM and DVSM could 

potentially be included in CTI platforms to produce targeted 

and holistic threat intelligence.  

Limitations 

As with any study, our work has several limitations. First, 

EVA-DSSM cannot link exploits and vulnerabilities that are 

not yet published (i.e., publicly accessible). Second, DVSM 

does not explicitly account for the internal security controls 

that an organization may have deployed (information not 

available in our study). Third, we do not have access to the 

assets or organizational insight at any of the hospitals or 

SCADA networks to validate whether the detected 

vulnerabilities are truly susceptible to the linked hacker 

exploits. As a result, the expert evaluation of usefulness for 

the EVA-DSSM and DVSM is only a complementary 

evaluation (not the main evaluation) for the proposed 

approaches, rather than a thorough evaluation of risk 

likelihood and asset criticality in production environments 

(Agrawal et al., 2014). We note that these limitations are not 

limited to our study, but any study exploring vulnerabilities 

without organizational access (Mell et al., 2007; Farris et al., 

2018).   

Conclusion and Future Directions 

Cybersecurity is undoubtedly one of modern society’s grand 

challenges. CTI offers organizations the opportunity to 

mitigate cyberattacks. However, many organizations struggle 

to implement effective CTI capabilities due to their inability 

to automatically pinpoint relevant exploits for their 

vulnerabilities. Hacker forums from the Dark Web provide a 

novel data source that, when coupled with known 

vulnerabilities, can help develop proactive and holistic CTI. 

Although IS scholars are equipped to produce significant CTI 

research contributions in this regard, extant IS cybersecurity 

literature focuses primarily on behavioral compliance, risk 

management, investments in securing digital assets, and 

market effects of securing digital assets. Moreover, extant 

cybersecurity analytics literature has primarily focused on 

analyzing single data sources rather than multiple data sources 

simultaneously. Significant opportunity remains for IS 

scholars to develop novel computational IT artifacts that 

automatically link Dark Web data and vulnerability 

assessment data to enhance CTI capabilities.  

In this study, we aimed to develop a novel approach to link 

hacker exploits from the Dark Web to vulnerabilities detected 

by vulnerability assessment tools (e.g., Nessus). To achieve 

this goal, we developed a novel EVA-DSSM algorithm that 

draws upon principles in deep learning, bidirectional text 

processing, and attention mechanisms. Through a series of 

technical benchmark experiments, we demonstrated how 

EVA-DSSM outperforms state-of-the-art non-DL and DL-

based short text matching baseline methods across four major 

categories of exploits. In addition to contributing the EVA-

DSSM, we also developed a novel DVSM score that 

incorporates vulnerability severity, quantity, and hacker 

exploit age to help support enhanced device prioritization. We 

demonstrated EVA-DSSM’s and DVSM’s potential practical 

utility with proof-of-concept case studies of openly accessible 

devices at the top eight U.S. hospitals and SCADA systems 

deployed worldwide. A complementary user evaluation 
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indicated that 45 cybersecurity professionals (currently 

serving in SOC, IR, vulnerability management, and/or 

operational cybersecurity roles) found the EVA-DSSM and 

DVSM results more useful than those generated by baseline 

approaches for both case studies.  

There are several promising directions for future research. 

First, researchers could apply EVA-DSSM and DVSM on 

foreign hacker forums (e.g., Russian, Middle Eastern) to 

identify the systems various geopolitical regions target. 

Second, behavioral IS studies could use cybercrime theories 

to better understand why hackers target specific 

vulnerabilities. Third, future work could build a user interface 

upon the EVA-DSSM and DVSM and deploy it into a 

production environment. Such a deployment could facilitate 

semistructured interviews with CISOs, longitudinal field 

studies, and case studies to help researchers understand how 

the approaches are adopted into practice. Finally, future 

computational IT artifacts could examine how to create 

exploit-vulnerability linkages for vulnerabilities present in 

emerging technologies such as GitHub, containers, dynamic 

virtual networks, and others. Each extension can provide 

much-needed cybersecurity capabilities to help secure 

cyberspace.  
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Appendix A 

Results of the Expert Evaluation of Usefulness 

In the main text, we discussed the procedure for conducting a complementary user evaluation that examined how useful cybersecurity experts 

found the exploit-vulnerability pairs and risk (severity) scores generated from our proposed Exploit-Vulnerability Attention Deep Structured 

Semantic Model (EVA-DSSM) and Device Vulnerability Severity Metric (DVSM) compared to conventional Deep Structured Semantic 

Model (DSSM) and Common Vulnerability Scoring System (CVSS). This complementary user evaluation was conducted for both the case 

studies on the top eight hospitals in the U.S. and on the over 20,000 Supervisory Control and Data Acquisition (SCADA) devices worldwide. 

In Table A1, we provide sample links and scores for the hospital case study that were presented to the experts.  

The contents in the first and fourth rows were generated by the EVA-DSSM and DVSM. The rest were from the conventional DSSM and 

CVSS. Blinding and interspersing links and scores in this way helped ensure that the cybersecurity experts did not favor one approach. For 

each link, we asked the expert if “the exploit-vulnerability link is useful for identifying what exploit could target this vulnerability.” For each 

score, we asked if “the risk prioritization score is useful to prioritize exploit-vulnerability pairs more effectively.” Following recent studies 

in information systems (IS) literature (Abbasi et al., 2018; Chau et al., 2020), each item was adapted from Davis (1989), Davis et al. (1989), 

and Venkatesh et al. (2003). Both items were rated on a scale of 1-7, with 1 being strongly disagree and 7 being strongly agree. To control 

the scope of each study, we selected the 76 exploit-vulnerability links presented from the hospital case study in Table 20 and the top 50 

exploit-vulnerability pairs (based on the number of devices afflicted) for the SCADA case study. Executing the usefulness evaluations with 

these samples simulates the kind of situations a cybersecurity analyst commonly faces when prioritizing vulnerabilities, wherein they can 

identify the top-rated issues for multiple types of devices across their networks (hospital case study) and/or identify the top n of vulnerabilities 

that afflict a category of their devices (SCADA case study) (Agrawal, 2014). We present the mean values of the proposed approaches, mean 

values of the benchmark approaches, and the p-value attained by the paired t-test for both case studies in Table A2. 

Overall, the panel of 45 cybersecurity experts found the EVA-DSSM and DVSM results more useful than the results of the prevailing 

benchmark approaches (DSSM and CVSS). The mean averages were higher for the SCADA case study than for the hospital case study. This 

is likely attributable to the nature of the exploit-vulnerability links that are present in SCADA devices, many of which pertain to the remote 

monitoring vulnerabilities present in these devices. These types of vulnerabilities are more commonly seen by cybersecurity experts, and 

therefore they can more effectively ascertain their usefulness compared to the diversity of exploits in the hospital example. Taken together, 

these results indicate that the EVA-DSSM and the DVSM both hold promise for serving as the foundation for advanced CTI systems.  

 

Table A1. Sample Exploit-Vulnerability Links and Severity Scores Used for the User Evaluation on the 
Hospital Case Study 

# Vulnerability Exploit Risk score  

1 Web server transmits 
Cleartext credentials 

Joomla component event manager Blind SQL injection  0.313 

2 Web server transmits 
Cleartext credentials 

Mozilla Firefox 3.6 (multitudinous looping) denial of service 
exploit  

2.6 

3 Browsable web directories OpenOffice .slk file parsing null pointer vulnerability  5.0 

4 Browsable web directories Safari v4.0.4  Firefox v3.5.6  SeaMonkey v2.0.1  Opera 
v10.10 DoS exploit  

0.604 

 

Table A2. Results of the Expert Evaluations of Usefulness* 

Case 
study 

Items EVA-DSSM + 
DVSM 

DSSM + CVSS P-value 

Mean Mean 

Hospitals The exploit-vulnerability link is useful for identifying what 
exploit could target this vulnerability. 

6.23 5.12 p < 0.05 
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The risk score is useful to prioritize exploit-vulnerability pairs 
more effectively. 

6.13 4.91 p < 0.05 

SCADA The exploit-vulnerability link is useful for identifying what 
exploit could target this vulnerability. 

6.54 5.45 p < 0.05 

The risk prioritization score is useful to prioritize exploit-
vulnerability pairs more effectively. 

6.47 5.17 p < 0.05 

Note: * Following the survey, the lead author followed up with each participant to debrief them about the intent, objective, and results of the 
study. 


