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Abstract—The accelerated growth of computing 

technologies has provided interdisciplinary teams a platform for 

producing innovative research at an unprecedented speed. 

Advanced scientific cyberinfrastructures, in particular, provide 

data storage, applications, software, and other resources to 

facilitate the development of critical scientific discoveries. Users 

of these environments often rely on custom developed virtual 

machine (VM) images that are comprised of a diverse array of 

open source applications. These can include vulnerabilities 

undetectable by conventional vulnerability scanners. This 

research aims to identify the installed applications, their 

vulnerabilities, and how they vary across images in scientific 

cyberinfrastructure. We propose a novel unsupervised graph 

embedding framework that captures relationships between 

applications, as well as vulnerabilities identified on 

corresponding GitHub repositories. This embedding is used to 

cluster images with similar applications and vulnerabilities. We 

evaluate cluster quality using Silhouette, Calinski-Harabasz, 

and Davies-Bouldin indices, and application vulnerabilities 

through inspection of selected clusters. Results reveal that 

images pertaining to genomics research in our research testbed 

are at greater risk of high-severity shell spawning and data 

validation vulnerabilities. 

Keywords—Scientific cyberinfrastructure, vulnerability 

scanning, Graph Embedding, GitHub, virtual machine 

I. INTRODUCTION 

The rapid advancement and development of computing 

technologies over the past decade has allowed for an 

unprecedented level of innovative scientific research. From 

DNA sequencing to the simulation of planetary formations 

and black hole imaging, interdisciplinary research teams have 

benefited tremendously from scalable, high performance 

computing environments. The National Science Foundation 

(NSF) has funded key Large Facilities (LFs), designated as 

scientific cyberinfrastructure (CI), to provide agile computing 

platforms to thousands of researchers [1]. Such NSF-funded 

installations include the Open Science Grid, TeraGrid, 

CyVerse, Jetstream, and Chameleon Cloud [2]–[4]. Users 

accessing these environments can develop their own custom-

built virtual machine (VM) images to execute their desired 

scientific tasks. Figure 1 illustrates a subset of sample images 

that users can launch, e.g., Ubuntu 18.04 GUI XFCE Base.  

 

Fig. 1. Examples of User-Developed VM Images 

These images provide metadata such as image name, 

author, date published, description, and tags of keywords 

related to the image. In a typical workflow, users review 

names, tags and descriptions to identify images most suitable 

for their task. Once an image is selected, a user can spawn an 

instance of an arbitrary size, ranging from single to multiple 
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core instances, containing varying levels of RAM. Users often 

install open source (e.g., GitHub) packages and applications 

on these images to help support their desired analytics.  

Despite offering unprecedented convenience, scalability, 

and scientific efficiency, applications from public repositories 

can contain vulnerabilities undetectable by conventional 

scanners (e.g., Nessus) [5]–[7]. These issues can potentially 

disrupt high-impact scientific workflows if exploited.  

In light of these significant ramifications, this research 

aims to identify the installed applications, their relationships 

to other applications, their vulnerabilities, and how they vary 

across images in scientific cyberinfrastructure. We develop a 

novel graph embedding approach that generates low-

dimensional vector representations of each VM image based 

on installed applications, their dependencies, and 

vulnerabilities. Our results indicate that we can cluster images 

with similar applications, providing a more intelligent and 

targeted means for assessing and mitigating vulnerabilities. 

The remainder of this paper is organized as follows. First, 

we review literature related to conventional and 

machine/deep learning-based device fingerprinting, and 

unsupervised graph embedding. Second, we present our 

research testbed and design, as well as our vulnerability 

assessment of the image applications within the scientific CI 

environment. Finally, we discuss our results and future 

direction for this research. 

II. LITERATURE REVIEW 

We review two key areas of literature. First, we review 

literature on conventional and machine/deep learning-based 

fingerprinting to identify prevailing techniques and data. 

Second, we review unsupervised graph embedding methods 

to identify how to generate low-dimensional representations 

from unlabeled graph-structured data. 

A. Conventional and Machine/Deep Learning-Based OS 

Fingerprinting 

Operating system (OS) fingerprinting is a commonly used 

method for identifying and representing devices on a network. 

Two fingerprinting approaches exist: passive and active. 

Passive approach identifies the device OS by observing 

network traffic, while active approach directly sends packets 

to a machine and analyzes the response [8]. These approaches 

are used to remotely gather OS data to generate an identifying 

signature for inventorying, updating, and/or patching outdated 

systems [9], [10], using tools such as Nmap, Ettercap, and p0f  

[11]. Generated fingerprints from these tools are useful for 

identifying device properties but do not allow for 

comprehensive direct comparisons between machines. We 

expand our review to gain insight from machine and deep 

learning-based fingerprinting techniques. 

Device fingerprinting has seen widespread adoption of 

machine and deep learning techniques in recent years. These 

techniques have been popularized due to the exponentially 

increasing number of Internet of Things (IoT) devices. New 

methods have been developed to generate fingerprints for 

endpoint and device identification [12]–[14], and device 

localization/positioning [15]–[18]. Researchers have 

successfully leveraged data testbeds consisting of IoT devices, 

their network traffic data, and radio frequency data for input 

into machine/deep learning models [19]. 

 While fingerprinting has been performed using a variety 

of features and sources, prevailing techniques omit host 

features such as installed applications and their dependencies 

[20]. These applications can include vulnerabilities linked to 

certain features (e.g.  dependencies) [21]. In scientific CI, it is 

imperative to understand inter-application relationships 

within each VM image. This requires a method that captures 

application relationships to create a holistic representation. 

B. Unsupervised Graph Embedding Methods 

Graph analytics are a group of methods that can capture 

information that is hidden within graphs. Graph embedding 

methods are effective in generating fixed representations of 

entire graphs in a Euclidean space while still preserving the 

graph structures [22]. This representation can then be used for 

subsequent tasks, such as clustering or classification. There 

are four levels of granularity for graph embedding methods: 

node, edge, substructure, and whole graph embedding. Given 

our task of creating a representation of an entire image 

utilizing unlabeled data, we review relevant unsupervised 

whole-graph embedding methods.  

Graph embedding methods can be split into two major 

categories based on their operations. Graph2vec and GL2vec 

are graph kernel-based, whereas NetLSD, GeoScattering, SF, 

and FGSD use spectral fingerprinting methods based on 

extracted graph statistics [23]. Inspired by doc2vec, graph2vec 

uses negative sampling to create rooted subgraphs of the nodes 

within a graph and trains a skip-gram model to maximize the 

probability of predicting subgraphs [24]. GL2vec is an 

extension of graph2vec that can handle edge labels [25]. 

NetLSD [26], GeoScattering [27], SF [28], and FGSD [29] all 

rely on statistical characteristics of the graph and spectral 

features. Kernel-based methods are often preferred as they 

create whole graph and feature embeddings jointly. 

Consequently, they are suitable for downstream clustering or 

classification algorithms. 

Graph embedding methodology is similar to deep learning 

methods found in device fingerprinting, as it uses data features 

to create a single representation. Therefore, they can be 

leveraged to capture representations that provide more 

comprehensive views of a device or system.  
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Fig. 2. Proposed Graph Embedding Framework for Images 

III. RESEARCH GAPS AND QUESTIONS 

We have identified several limitations from previous 

literature. First, ML/DL-based fingerprinting has been used 

for downstream tasks such as device positioning yet omits 

vulnerability information. Second, prevailing fingerprinting 

techniques have primarily used temporal data and have not 

been applied on datasets to capture application relationships 

and their features. Third, graph embedding methods have not 

yet been formulated for system fingerprinting. These 

limitations motivate the following research questions: 

1) How can we develop an unsupervised deep learning 

framework to automatically generate a representation of a 

VM image in scientific cyberinfrastructure? 

2) How can we capture the image applications, their 

relationships, and detected vulnerabilities using a graph 

embedding? 

IV. RESEARCH DESIGN AND TESTBED 

We propose a novel unsupervised graph embedding 

framework to answer these questions. The framework, shown 

in Figure 2, has three components: (1) Data Extraction and 

Pre-Processing; (2) Graph Transformation and Embedding; 

and (3) Embedding Evaluation. We describe each component 

in further detail in the following sub-sections.  

A. Data Extraction and Pre-Processing 

We collected user system data from a major NSF-funded 

scientific cyberinfrastructure platform with more than 7,000 

participating institutions and 45,000 users in life sciences. To 

protect their privacy, we have anonymized their name. The 

data collection has two phases: extracting application data 

from the VM images and vulnerability assessment on the 

collected applications. We describe both in turn. 

1) Image Data Collection 

Using the Advanced Package Tool (APT), we collected 

software application data from each launchable image hosted 

on the CI platform, including current and previous versions 

of images. This resulted in 148 total images. Of these images, 

126 were Ubuntu-based Linux distributions. Given the 

distribution of Linux variants, we use the subset of Ubuntu- 

 

based images. Over 6 million packages were collected from 

these images. Most applications provide a URL to the 

homepage where the application is maintained. We 

summarize the application homepage distribution in Table 1. 

TABLE I.  APPLICATION HOMEPAGES PER IMAGE 

Application 

Homepage 

Number of 

Applications 

Percent of Total 

Applications 

GitHub 817,646 11.96% 

Gnu 631,254 9.23% 

Sourceforge 444,254 6.5% 

Metacpan 257,842 3.77% 

Haskell 158,013 2.31% 

kde 151,451 2.21% 

launchpad 145,707 2.13% 

null 1,321,399 19.32% 

Other 2,911,046 42.57% 

 

The leading domain is GitHub, an open social coding 

repository, which more than 800,000 applications reference. 

19.32% of our applications do not have homepages, and 

42.57% lead to other homepages with less than 2% of total 

applications. Given GitHub’s prevalence, we analyze the 

relevant GitHub repositories that maintain the collected 

applications. We summarize our findings in Table 2. 

TABLE II.  APPLICATION GITHUB REPOSITORY SUMMARY 

Data Type Root Repositories 

Number of Repositories (distinct) 8,701 

Number of Forks 1,258,075 

Number of Commits 5,200,563 

Size (files) 43,358,089 

Number of Issues 225,327 

Number of Languages 69 

Top Programming Languages  Python (1,811), C (1,536) 

 

We identified 8,701 distinct repositories containing over 

43 million files from GitHub that are related to the 

applications found on collected images. Python and C are the 

most frequent, for approximately 40% of all repositories. 

GitHub vulnerability scanners are then assessed based on 

functionality with those programming languages. 

2) Application Vulnerability Assessment 

We reviewed 14 GitHub vulnerability scanners and 

selected two based on coverage and usage. Bandit and 
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FlawFinder are both scanners designed to identify secrets, 

insecurities, and attack vulnerabilities that exist within 

Python and C code hosted on GitHub. Both tools categorize 

vulnerabilities into High, Medium, and Low severities. High 

vulnerabilities include SSL with bad versions, blacklisted 

Python input calls, and deprecated libraries. Medium 

vulnerabilities include hardcoded SQL expressions, 

paramiko calls in Python, and various XML methods. Finally, 

Low vulnerabilities include try/except functions, blacklisted 

Python imports, and certain subprocess spawns. We scanned 

each repository in our testbed for vulnerabilities and 

summarize selected results in Table 3. 

TABLE III.  VULNERABILITY ASSESSMENT RESULTS FOR BANDIT 

Vulnerable 

Applications 
Vulnerabilities 

Most Frequent Vulnerable 

Repository/Application 

Number of 

Vulnerabilities 

47,932 High 1,634 

usit-gd/zabbix 104 

CoreSecurity/impacktct 77 

ctuning/ck 30 

91,571 Medium 9,959 

PacificBiosciences/pbcore 1,599 

annulen/webkit 373 

feist/pcs 293 

144,481 Low 221,869 

sympy/sympy 66,344 

annulen/webkit 9,559 

dask/dask 4,581 

 

In total, 233,642 vulnerabilities were detected through 

Bandit, while 25,170 vulnerabilities were detected by 

FlawFinder. 1,634 vulnerabilities are identified as high 

severity, propagating across 47,932 applications for each 

image. In the medium severity results, both 

PacificBiosciences/pbcore and feist/pcs are directly linked to 

biology/health APIs. These tools report and detect individual 

vulnerabilities but do not provide a means to assess which 

images contain vulnerable applications or their dependencies. 

A different method is required to capture inter-application 

relationships that the vulnerability scanners overlook. 

B. Graph Transformation and Embedding 

A graph embedding-based approach can capture inter-

application relationships and provide a fine-grained 

representation of the images for downstream clustering tasks. 

The installed applications on an image can be represented as 

a graph. Relationships are created between applications based 

on shared dependencies. Following this principle, we define 

our graphs as G=(A,E,F), where G is an undirected graph, A 

is the node set, {u1, u2, u3, … un}, of GitHub-maintained 

applications in an image, E is the edge set, {e1, e2, e3, …en}, 

of all edges between applications based on shared 

dependencies, and F is a feature matrix of all vulnerabilities 

for that application.  

As indicated in the literature review, selection of graph 

embedding algorithm is contingent upon the data 

characteristics, task, and research objective. The described 

graph formulation includes nodal features and undirected 

edges. Our proposed analytics requires a method that operates 

without prior knowledge of the graph and incorporates nodal 

features. Therefore, we select graph2vec. The embedding 

generation process with graph2vec follows five steps [24]:  

• Step 1: Nodes are negatively sampled and relabeled 

to create rooted subgraphs in the graph.  

• Step 2: A skip-gram model is trained to maximize the 

probability of predicting subgraphs that exist in the 

input graph.  

• Step 3: The embedding is then learned from the 

extracted subgraphs over several epochs. 

• Step 4: A final embedding is produced as a one-hot 

vector. 

• Step 5: Steps 1-4 repeat for each graph in a given set.  

In our case, subgraphs are generated around each 

application, capturing its dependencies with other 

applications. Images that have similar applications and 

dependencies will thus have similar embeddings.   

C. Embedding Evaluation 

The generated image embeddings are subsequently 

clustered using K-means, a prevailing partitional clustering 

algorithm. We evaluate these clusters using Silhouette (SI), 

Calinski-Harabasz (CH), and Davies-Bouldin (DBI) indices 

to help identify the optimal number of clusters by measuring 

cluster quality, maximizing intra-cluster similarities and 

minimizing inter-cluster differences. SI uses average 

dissimilarity between points to show the structure of the data 

and its possible clusters [30]. CH represents the ratio of 

within-cluster and between cluster dispersion, where a higher 

number represents well separated and compact clusters [31]. 

DBI measures the ratio of within-cluster to between-cluster 

distances [32]. Each metric has been used extensively in 

previous clustering research [33], [34]. 

V. RESULTS AND DISCUSSION 

We evaluate for cluster sizes from 3 to 20 to identify the 

optimal number of clusters. SI scores closer to one, a DBI 

score closer to zero, and high CH ratio indicate stronger 

performance. We summarize evaluation results in Table 4. 

The best performance is highlighted in boldface. 

TABLE IV.  IMAGE CLUSTER EVALUATION METRICS 

K Clusters 
Evaluation Metrics 

Silhouette Calinski-Harabasz Davies-Bouldin 

3 0.429 58.526 1.116 

6 0.709 158.762 0.625 

9 0.824 415.824 0.37 

10 0.808 466.881 0.398 

20 0.622 992.431 0.440 
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Evaluation results indicate that nine-clusters provides the 

highest SI at 0.824, and lowest DBI score at 0.37, while still 

maintaining a high CH ratio. Given these results, we run k-

means for nine clusters and plot the results in Figure 3. The 

numbers are the ID for each image. Clusters are color-coded, 

circled, and labeled.  

 

Fig. 3. Selected Image Clusters 

The image clusters are relatively self-contained, with 

some overlap. Cluster B contains the highest number of 

images with 31, and cluster H contains the lowest number 

with six images. The average cluster size was 14 images. 

Cluster C contains images that are primarily base Ubuntu 

distributions. Cluster E contains images primarily loaded 

with RStudio. Clusters A, F, and G contain images designed 

for RNA and hybridized genome sequencing. We present the 

average number of vulnerabilities per cluster for each 

vulnerability in Figure 4. 

 

Fig. 4. Average Number of Vulnerabilities by Type Per Cluster 

The most frequent type of vulnerability is related to 

insecure functions implemented in the code. This issue has 

over 8,000 counts in clusters A, E, G, and I. Clusters E and I 

possessed the highest number of average vulnerabilities. 

These clusters contained significantly higher counts of 

insecure function, input, and module vulnerabilities, at 

11,954, 8,433, and 6,269, respectively. Cluster H contained 

the minimum, at 459, 394, and 350. Cluster H contained 

1,500 total vulnerabilities, the lowest average number.  

We further examine clusters H and I based on the 

difference in total number and severities of vulnerabilities. 

Cluster H contains six images with low severity 

vulnerabilities. 462 vulnerabilities were related to spawning 

subprocesses without shells and 210 vulnerabilities pertained 

to data validation. Cluster I contains seven images with high- 

severity insecure input and insecure function vulnerabilities 

that seldom occur in cluster H. These include 1,129 shell 

spawning issues and 612 data input functions. Vulnerabilities 

that spawn shells pose tremendous risk, as hackers can exploit 

these shells to execute arbitrary commands and disrupt 

operations. For example, ‘rm -rf /’ can be passed as a 

parameter to a spawned shell to delete all files in the root 

directory. This destructive attack shell injection command 

that can set back scientific workflows by months if data and 

custom developed programs are erased. In cluster I, these 

specifically affect images that provide computational 

resources for genomics-related scientific workflows. Given 

the frequency and severity of these vulnerabilities, images in 

cluster I are at a much higher risk of disruption compared to 

those in cluster H. 

These results suggest that images in clusters E and I 

should be prioritized for vulnerability mitigation, followed 

closely by those in clusters A and G. Scientific CI 

administrators can follow two strategies to remediate the 

detected vulnerabilities. First, issues should be opened on 

corresponding GitHub repositories to alert the maintainer of 

the specific insecure functions. Second, automated 

notifications can be sent to image users of the identified 

vulnerable applications and/or by specific vulnerability types. 

For shell spawning vulnerabilities, users should ensure that 

they change the shell parameter to ‘False’ within the related 

Python file. For input validation vulnerabilities, users should 

ensure that they properly sanitize their data, omitting 

potential arbitrary code prior to execution. 

VI. CONCLUSION AND FUTURE DIRECTIONS 

 Scientific CI provides environments to thousands of 

scientists that enable them to execute high-impact scientific 

inquiries and discovery. However, these environments may 

contain unconventional vulnerabilities, which expose users to 

potential disruption of high-impact scientific workflows. Our 

proposed research framework provides a novel approach for 

automatically detecting and grouping unconventional 

vulnerabilities applicable to multiple scientific CI. User 

0

2,000

4,000

6,000

8,000

10,000

12,000

A B C D E F G H I

N
u

m
b

er
 o

f 
V

u
ln

er
ab

ili
ti

es

Cluster Label

Average Number of Vulnerabilities Per Cluster

Insecure function Insecure Module
Deprecated Library Insecure Connection
Insecure Input SQL Injection
XML Attack XSS Vulnerability

 

H 

C 

B 

F 

G 

E 

A 

Authorized licensed use limited to: The University of Arizona. Downloaded on October 05,2022 at 17:30:28 UTC from IEEE Xplore.  Restrictions apply. 



images are grouped together based on similar applications 

and vulnerabilities. As a result, they can facilitate targeted 

mitigation and remediation activities. 

There are several promising directions for future work. 

First, we intend to incorporate multiple data sources from 

other CI’s to further demonstrate the generalizability of the 

proposed approach. Second, we plan to create a more holistic 

representation through a multi-view learning strategy 

incorporating additional image features. Both directions can 

further help improve scientific CI cybersecurity. 
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