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 Advancing the quality of healthcare for senior citizens with chronic conditions is of great social 

relevance. To better manage chronic conditions, objective, convenient, and inexpensive wearable sensor-

based information systems (IS) have been increasingly used by researchers and practitioners. However, 

existing models often focus on a single aspect of chronic conditions and are often “black boxes” with 

limited interpretability. In this research, we adopt the computational design science paradigm and 

propose a novel adversarial attention-based deep multisource multitask learning (AADMML) framework. 

Drawing upon deep learning, multitask learning, multisource learning, attention mechanism, and 

adversarial learning, AADMML addresses limitations with existing wearable sensor-based chronic 

condition severity assessment methods. Choosing Parkinson’s disease (PD) as our test case because of 

its prevalence and societal significance, we conduct benchmark experiments to evaluate AADMML 

against state-of-the-art models on a large-scale dataset containing thousands of instances. We present 

three case studies to demonstrate the practical utility and economic benefits of AADMML and by applying 

it to detect early-stage PD. We discuss how our work is related to the IS knowledge base and its practical 

implications. This work can contribute to improved life quality for senior citizens and advance IS research 

in mobile health analytics.  

Keywords: Design science, deep learning, multitask learning, multisource learning, attention mechanism, 

adversarial learning, mobile health analytics 
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Introduction  

Recent years have witnessed a significant increase in life 

expectancy in the United States (79.3 years in 2016, World 

Health Organization, 2016). Given the increase in the senior 

population, the prevalence of chronic conditions has also 

become a growing societal concern. In 2014, 60% of 

Americans had at least one chronic condition. Meanwhile, the 

medical costs related to chronic conditions have also been 

steadily increasing, currently accounting for 90% of the 

nation’s $3.5 trillion in annual healthcare expenditures 

(Centers for Disease Control and Prevention, 2020). Among 

the various chronic conditions, Parkinson’s disease (PD) is the 

second most common neurodegenerative disorder in the U.S., 

with symptoms including tremors, rigidity, bradykinesia 

(slowed movement), and postural instability, and is estimated 

to cost $15.5 billion per year (Gooch et al., 2017). Similar to 

many other chronic conditions, PD cannot be cured. However, 

its early detection can significantly alleviate its progression as 

medicine and therapies can be effective in treating early-stage 

PD (Mayo Clinic, 2020). With proper management, a 20% 

reduction in PD progression would result in net monetary 

benefits of $60,657 per patient (Johnson et al., 2013). 

Practitioners are eager for new tools that could be deployed 

with ease both at the clinic and remotely via telemedicine to 

assist in the management of chronic conditions. For instance, 

by assessing the severity of PD, such tools could potentially 

optimize pharmacological treatment, guide the application of 

interventions such as physical and occupational therapies, and 

determine the need for environmental modifications. 

Ultimately, they could lead to a measurable decrease in 

hospitalizations and early deaths among the PD population. 

With the development of mobile sensing technologies, 

wearable sensor-based information systems (IS) could 

provide researchers and practitioners with an objective, 

convenient, and inexpensive means to assess the severity of 

chronic conditions (Howcroft et al., 2013). Wearable sensors 

(e.g., accelerometers, gyroscopes, and microphones) can 

capture quantitative data with high sensitivity and high 

granularity (sampling frequency up to 100 Hz, equal to 100 

data points per second). They can be attached to the human 

body in a clinical or home setting to collect an immense 

amount of detailed data (millions of data points per day). With 

a machine learning model, wearable sensor data can be 

analyzed to reveal early signals of chronic condition 

progression, thus empowering seniors and their families to 

seek earlier treatment.  

Assessing the severity of chronic conditions is often not a 

stand-alone task. Comorbidities are very common in chronic 

condition patients (70% of them have more than one 

condition) (Buttorff et al., 2017). Even within a single chronic 

condition, there can be multiple related aspects that need to be 

considered separately (e.g., motor and nonmotor factors of 

PD). A multifaceted model that can jointly tackle multiple 

chronic conditions, or multiple aspects of a chronic condition, 

would be extremely beneficial for comprehensive and 

accurate chronic condition assessment. In addition, with the 

abundance of wearable sensors both in volume (e.g., 100 data 

points per second) and in variety (e.g., accelerometers, 

gyroscopes, and microphones), an integrated model that can 

leverage a broad range of data input types is crucially needed. 

Interpretability is another critical issue that haunts many 

machine learning models, and deep learning models in 

particular. Partly because of their complex architectures, most 

deep learning models often simply provide a class label for 

classification problems or a numeric value for regression 

problems as the result, without suggesting contributing factors 

that are likely to lead to the result. Such “black box” models 

are especially concerning for health applications such as 

disease diagnostics because health practitioners are eager to 

understand how a diagnosis is made in addition to the 

diagnosis result. From an IS perspective, deep learning models 

with little interpretability can contribute little to people’s 

understanding of the problem domain. A model that can 

provide insight into the data and improve the design of 

domain-specific information systems would be of great 

interest to health professionals and IS researchers. 

While valuable, the extant studies on wearable sensor-based 

chronic condition severity assessment face the following four 

challenges. First, prevailing approaches focus on assessing a 

single aspect of a chronic condition (e.g., freezing of gait 

(FoG) in PD). As chronic conditions may have multiple 

related aspects, an integrated model that can assess multiple 

aspects of a condition has the potential to investigate the 

interplays between them. This can be resolved by a model that 

supports multitask learning. Second, the majority of extant 

studies conducted only one type of experimental trial (e.g., 

walking tests) for assessing chronic condition severities. A 

model that can integrate multiple types of experimental trials 

(e.g., walking and standing tests) and multiple types of data 

sources (e.g., accelerometers, gyroscopes, and microphones) 

has the potential to allow for a more comprehensive 

assessment. This can be resolved by a model that supports 

multisource learning. Third, although various deep learning 

models have been proposed for wearable sensor data in the 

literature, they face interpretability issues. Knowing which 

part of data contributes more to predictive outcomes could be 

critical in health contexts, as it could help health professionals 

interpret model results and prioritize therapies and 

medications. This can be tackled by employing the attention 

mechanism in deep learning models. Fourth, deep learning 

models are known to require high computational power and 

involve high training overheads. Novel training algorithms are 

needed for reduced training time and improved model 
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performance; one such promising direction is adversarial 

learning. The above challenges motivate an innovative IT 

artifact for advanced wearable sensor-based chronic condition 

severity assessment. 

Recently, chronic condition management has become an 

increasingly significant focus of the IS community (Zhang & 

Ram, 2020; Liu et al., 2020b). Although mobile technologies 

have long been of interest to IS researchers (Ghose et al., 2012; 

Sun et al., 2017), to the best of our knowledge, no existing IS 

study has proposed a wearable sensor-based solution for 

chronic condition severity assessment, where the design science 

paradigm can make a unique contribution. Design science 

creates and evaluates IT artifacts intended to solve identified 

business problems (Hevner et al., 2004). Specifically, the 

computational design science paradigm provides insights into 

how to design novel computational models and systems to 

resolve problems with significant business and societal impact 

(Rai, 2017). The successful demonstrations of design novelty 

and validity are the core of computational design science 

research (Rai, 2017). Following the computational design 

science paradigm and prior IS research on health analytics (Lin 

et al., 2017; Zhang & Ram, 2020; Liu et al., 2020b), we propose 

and rigorously evaluate a novel deep learning framework, 

adversarial attention-based deep multisource multitask 

learning (AADMML). Drawing upon deep learning, multitask 

learning, multisource learning, and attention mechanism, 

AADMML addresses the limitations in existing wearable 

sensor-based chronic condition severity assessment methods by 

automatically extracting features from wearable sensor data, 

integrating multitask and multisource learning into a unified 

framework, and adopting the attention mechanism for model 

interpretability. In addition, we propose an innovative 

adversarial attention competition mechanism in AADMML 

that reduces model training time and improves model 

performance. We chose PD as our test case because of its high 

prevalence and societal significance and conducted benchmark 

experiments to evaluate AADMML against state-of-the-art 

feature-based and deep learning models on a large-scale dataset. 

We also present three case studies to demonstrate the practical 

utility and economic benefit of the proposed model. 

The scholarly contributions of this study are threefold. First, 

AADMML is one of the first deep learning models to enable 

a multifaceted evaluation of chronic conditions, both as a 

diagnostic tool and in identifying contributing factors. By 

involving multisource and multitask learning, the model is 

able to learn from multiple types of inputs to assess multiple 

aspects of chronic conditions for a more accurate diagnosis. 

Meanwhile, the attention mechanism improves model 

interpretability. From an individual perspective, the attention 

weights identify the factors that contribute to the patient’s 

chronic conditions, which provides evidence for revising the 

patient’s medications and therapies. From a collective 

perspective, the attention weights reveal the types of clinical 

experiments that are more significant to certain demographic 

groups, which can assist future clinical experiment and 

therapy development. Second, we contribute to the deep 

learning community by proposing a novel adversarial 

attention competition mechanism that speeds up model 

training and improves predictive outcomes in attention-based 

deep multisource learning models. This adversarial attention 

competition mechanism is generalizable to other application 

domains that involve deep multisource learning. Third, we 

contribute to design science theories, the IS community, and 

business disciplines by creating an interpretable IT artifact 

that can deal with novel challenges in the types of inputs, as 

well as in modes of learning tasks, which is critically needed 

in the rise of AI for business applications. With AADMML, 

traditional business problems such as customer relationship 

management have the potential to leverage the unprecedented 

abundance of data (e.g., telephone voice, live chat, email 

communications, social media, etc.) to analyze, interpret, and 

forecast consumer patterns and behaviors. The same can be 

applied to other business domains, such as determining 

premiums based on consumer data for the insurance industry. 

The rest of the paper is organized as follows. First, we review 

the existing literature on chronic conditions and wearable 

sensor technologies in IS and other related fields, attention-

based deep multisource multitask learning, and adversarial 

learning in deep learning. Then we identify research gaps and 

questions. Subsequently, we present our testbed and research 

design. Next, we summarize the results from experiments and 

case studies. Finally, we conclude this research by discussing 

our contributions to the IS knowledge base, practical 

implications, and promising future directions. 

Research Background 

Our research is guided by the following three streams of 

literature: (1) research on chronic conditions and wearable 

sensor technologies in IS and other related fields; (2) deep 

learning, multitask learning, multisource learning with the 

attention mechanism, and their applications in health contexts; 

and (3) adversarial learning in deep learning. We also discuss 

the research gaps and questions. 

Chronic Conditions and Wearable Sensor 
Technologies 

Health information technology (HIT) is defined as “a broad 

concept that encompasses an array of technologies to store, 

share, and analyze health information” (Baird et al., 2018). 

Benefiting from the rapid development of HIT such as health 
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information systems (HIS), social media, patient portals, 

online health communities (OHC), and electronic health 

records (EHR), information systems and data analytics have 

been playing an increasingly significant role in the 

management of chronic conditions. Table 1 summarizes 

selected recent IS research based on the HIT examined and 

the focus of the research. 

In addition to behavioral and empirical studies, design science 

has emerged as a significant branch in designing more effective 

IT artifacts (analytical models, systems, etc.) for chronic 

condition management (e.g., Zhang & Ram, 2020; Liu et al., 

2020b). The increasing prevalence of mobile devices and 

sensors (e.g., Apple Watch, Fitbit, etc.) presents a unique 

opportunity for collecting large-scale, always-on health 

information for advanced health analytics (Chen et al., 2012). 

Although mobile and sensor analytics exist in the broader IS 

field, they focus on mobile internet and web browsing activities 

(Adipat et al., 2011; Ghose et al., 2012), mobile app design and 

behavior (Hoehle & Venkatesh, 2015; Kwon et al., 2016; Sun 

et al., 2017), and service innovation (Venkatesh et al., 2017; Ye 

& Kankanhalli, 2018). Because of the increasing societal 

significance of chronic condition management (e.g., PD), 

designing novel mobile health analytics for chronic condition 

severity assessment remains an underexplored yet critically 

needed perspective of IS literature. 

The constantly evolving characteristics of mobile technology 

and health analytics require the continuous design of novel 

algorithms, models, and analytical frameworks. The design 

science paradigm in IS creates and evaluates the IT artifacts 

intended to solve identified business problems. The utility, 

quality, and efficacy of a design artifact must be rigorously 

demonstrated via well-executed evaluation methods (Hevner et 

al., 2004). The computational design science paradigm further 

guides IS researchers on how to design computational models 

to resolve emerging practical business problems (Rai, 2017). 

This paradigm suggests that the design of the IT artifact can be 

informed by domain knowledge and data characteristics, where 

a relevant mature theory is often absent because of the nascence 

of the problem domain. The novelty and utility of the designed 

artifact must be demonstrated by comprehensive evaluations 

vis-à-vis selected state-of-the-art benchmark approaches. In 

addition, the artifact’s design should contribute to the IS 

knowledge base (Rai, 2017) through situated implementations 

of the artifact (e.g., a model or system), nascent design theory 

(e.g., design principles), and other forms (Gregor & Hevner, 

2013). For example, Lin et al. (2017) incorporated the 

computational design science paradigm by developing 

Bayesian multitask learning on EHR data to predict critical 

hospital adverse events. However, designing a high-utility and 

high-impact computational IT artifact requires a comprehensive 

understanding of the problem domain and state-of-the-art 

methods. We therefore review wearable sensor-based chronic 

condition severity assessment in Table 2, based on the data 

source (experimental trials from which sensor data are 

collected), number of subjects, assessment task, and models.   

In the literature, researchers collect wearable sensor data from 

experimental trials (e.g., 10-meter walking test, standing 

posture, 10-second speech, etc.) for chronic condition severity 

assessment in various contexts, including PD, diabetes, frailty, 

and falls. Wearable sensor data have two unique characteristics: 

each data point (e.g., a tri-axial acceleration value) contains very 

little information about an individual’s mobility status, while 

such data points are generated in an extremely high-velocity 

manner (e.g., 100 data points per second). These characteristics 

necessitate features being extracted from wearable sensor data 

before any statistical or machine learning models can be 

applied. Given that, most prior studies have first manually 

designed and selected their feature sets, then extracted features 

from wearable sensor data, and finally either applied statistical 

tests to examine the explanatory power of their features or 

inputted the features into a traditional machine learning model 

(e.g., support vector machine (SVM), random forest (RF), naive 

Bayes (NB), etc.) for a classification or regression task. 

However, current studies on wearable sensor-based chronic 

condition severity assessment face the following four 

limitations. First, while valuable, the manual design and 

selection of feature sets is ad hoc and labor intensive and 

requires significant domain knowledge, which could lead to 

inconclusive results (Hubble et al., 2015). Recently, deep 

learning has emerged as a significant branch of machine 

learning and has notably outperformed feature engineering-

based approaches in numerous sensory tasks (e.g., image 

recognition (Krizhevsky et al., 2012), wearable sensor-based 

activity of daily living (ADL) recognition (Wang et al., 2019), 

and speech recognition (Amodei et al., 2016), etc.). The 

outstanding performance of deep learning is largely attributable 

to its powerful automatic feature learning from complex data 

(Goodfellow et al., 2016). Given that, wearable sensor-based 

chronic condition severity assessment has the potential to 

benefit greatly from deep learning. Second, prevailing 

approaches focus on a single aspect of a chronic condition (e.g., 

freezing of gait (FoG) in PD). As chronic conditions may have 

multiple related aspects (e.g., motor and nonmotor factors of 

PD), we are motivated to assess multiple aspects of a condition 

in an integrated model, which has the potential to investigate the 

interplays between them. This falls into the field of multitask 

learning. Third, although the majority of extant studies have 

conducted only one type of experimental trial (e.g., 10-meter 

walking) and used it as the only data source, an increasing 

number of studies have conducted multiple types of trials or 

sensors (e.g., accelerometers, gyroscopes, and microphones) 

and extracted features from each data source for a more 

comprehensive assessment of chronic condition severity.  



Yu et al. / Wearable Sensor-Based Chronic Condition Severity Assessment 
 

 
MIS Quarterly Vol. 46 No. 3 / September 2022 1359 

 

Table 1. Recent Selected IS Research on Chronic Conditions 

Year Author HIT examined Focus 

2020 Bao et al. Patient portal Impact of patient-provider engagement on patients’ health outcomes 

2020 Zhang & Ram Social media 
Identifying and understanding triggers and risk factors that cause 
asthma exacerbations 

2020b Liu et al. Social media 
Evidence-backed digital therapeutics with technology-enabled 
interventions 

2020 Savoli et al. HIS Effective use of self-management IS for chronic conditions 

2020 Son et al. HIS 
Designing a smart asthma management system with Bluetooth-
enabled inhalers 

2020 Brohman et al. HIS 
How a telemonitoring feedback ecosystem is related to patient 
behavioral outcomes 

2020a Liu et al. OHC 
Mutual impact between patients’ and physicians’ participation in 
physician-driven OHC 

2019 Chen et al. OHC 
How participants are affected by relationships within an OHC and 
content exchanged between OHC participants 

2017 Lin et al. EHR Predicting adverse health events for diabetes patients 

2016 Kohli & Tan EHR Discussion on integration and analytics of EHR 

 

Table 2. Selected Research on Wearable Sensor-based Chronic Condition Severity Assessment 

Year Author Data source # Subjects Task Models 

2020 Nemati et al. 
1-second coughs, 10-
second speech 

21 
Severity assessment of 
obstructive lung disease 

Logistic regression, 
SVM, RF, MLP 

2020 Moon et al. 
30-second stand, 7-meter 
walk 

524 PD prediction 
NN, SVM, KNN, 
Decision tree, RF 

2019 Rastegari et al. 
10-meter walk, heel-toe 
tapping, circling 

43 Early diagnosis of PD SVM, RF, NB, AdaBoost 

2019 Polat 
Daphnet Freezing of Gait 
Dataset 

16 
Detecting freezing of gait 
(FoG) for PD 

Logistic regression 

2019 Piau et al. 9-meter walk 125 Fall risk assessment Regression 

2019 von Coelln et al. 
10-meter walk, standing 
posture, timed up and go 

683 PD prediction 
Cox proportional hazards 
model 

2018 Anand et al. 10-meter walk 25 
Detecting PD on/off 
states 

Regression, NB, RF 

2017 Millor et al. 
30-second chair stand, 3-
meter walk 

431 
Frailty severity 
assessment 

Decision tree 

2017 Watanabe et al. 15-meter walk 12 
Detecting forefoot load for 
diabetes 

Statistical tests 

Note: SVM: support vector machine; NN: naive Bayes; RF: random forest; NB: naive Bayes; MLP: multilayer perceptron 

 

These types of experiments fall into the field of multisource 

learning. Fourth, although various wearable sensor-based 

deep learning models have been proposed in the literature, 

they face interpretability issues. Knowing which part of data 

contributes more to the predictive outcomes could be critical 

in health contexts, as it could help health professionals 

interpret model results and prioritize therapies and 

medications. An emerging solution to this is the attention 

mechanism. Therefore, we review deep learning, deep 

multitask learning, deep multisource learning, and the 

attention mechanism in the next section. 

Deep Learning, Multitask Learning, and 
Multisource Learning 

Deep Learning 

As mentioned, deep learning has become one of the most 

promising branches of machine learning, with numerous 

successful applications (LeCun et al., 2015). Deep learning 

methods have also been increasingly embraced by IS 

researchers in chronic condition management (Liu et al., 2020b; 

Zhang & Ram, 2020). Benefiting from stacked neural network 

layers of nonlinear transformation (i.e., activation) functions, 
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error correction computations, and backpropagation operations, 

deep learning models can automatically learn salient feature 

representations from complex data, especially raw sensory data 

(LeCun et al., 2015). A brief comparison and discussion 

between deep learning and feature-based learning methods can 

be found in Appendix G. 

Deep Multitask Learning 

Next, we briefly discuss multitask learning and its 

implementation in deep learning. Multitask learning is a 

machine learning strategy in which multiple related prediction 

tasks are jointly trained to improve learning performance by 

leveraging the domain-specific information contained in the 

training signals of related tasks (Caruana, 1998). The key to 

multitask learning is knowledge sharing among tasks. Two 

major types of multitask learning exist in the literature: 

parameter-based and feature-based (Zhang & Yang, 2017). 

Parameter-based multitask learning uses model parameters (e.g., 

coefficients in linear models) in one task to help learn model 

parameters in other tasks via some mechanism (e.g., via 

regularization). There are four major approaches: low-rank 

(Ando & Zhang, 2005), task clustering (Jacob et al., 2009), task 

relation learning (Williams et al., 2007), and parameter matrix 

decomposition (Jalali et al., 2010). In contrast, feature-based 

multitask learning aims to learn common features across 

different tasks. There are two approaches: feature selection 

(Obozinski et al., 2010) and feature transformation (Caruana, 

1998). The feature selection approach selects a subset of the 

original features as a common representation for all tasks. The 

feature transformation approach applies a linear or nonlinear 

transformation on the original features and generates a set of 

features as a common representation for all tasks. Among the 

above approaches, feature transformation is the most widely 

adopted approach for deep multitask learning (Goodfellow et al., 

2016) because each deep learning layer is essentially performing 

a nonlinear transformation on its input. Therefore, multitask 

learning with feature transformation can be easily integrated into 

existing deep learning models. We summarize selected health 

research on deep multitask learning in Table 3, based on the data 

source, tasks, multitask learning strategy, and loss function. 

Deep multitask learning has been used in disease diagnosis, 

motion classification, and medical image segmentation, 

among other topics. The dominant multitask learning strategy 

is feature transformation, which creates shared and task-

specific layers in a deep learning architecture. In such a 

strategy, shared layers learn general features applicable to all 

tasks, and task-specific layers learn features applicable to a 

single task. In contrast to other multitask learning approaches, 

deep multitask learning often does not have special designs on 

the loss function. Most studies use the direct sum of the loss 

functions of the tasks as the total loss function.  

Deep Multisource Learning and the Attention 
Mechanism 

Unlike multitask learning, multisource learning is motivated 

by the need for data and sensor fusion, as the severity of a 

chronic condition often cannot be comprehensively assessed 

with only one data source. For instance, physicians often 

examine a PD patient’s motor status with multiple motor 

activities, including hand movements, leg agility, arising 

from a chair, gait, postural stability, and speech, among other 

tests and observations (MDS-UPDRS, Goetz et al., 2007). In 

the literature, multisource learning is also known as 

multimodal learning (Baltrusaitis et al., 2019), which refers to 

learning different information from multiple measurement 

modalities (e.g., simultaneously recorded audio and video 

[Chaudhuri et al., 2009] or images and text [Hodosh et al., 

2013]). We review recent health research on deep multisource 

learning in Table 4, based on the data sources, multisource 

learning strategy, and task. 

Deep multisource learning has been applied to human activity 

recognition, emotion recognition, and disease detection or 

prediction, among many other medical applications. The data 

sources include wearable sensor data, video and audio, 

radiological images, EHR, etc. Three general multisource 

learning strategies have been studied: raw data fusion, early 

fusion, and late fusion. Raw data fusion directly concatenates 

data from multiple sources and uses the merged data as if there 

were only one source. Early fusion learns source-specific 

features from each source, while there is a shared model 

structure that links the source-specific features for the 

prediction task. Late fusion trains a separate model branch for 

each data source. The final prediction result is an integration 

(e.g., an average) of the results of the model branches. An 

abstract illustration of the structures of the above three 

strategies can be found in Figure 1, assuming three sources 

and one prediction task. 

Early fusion is the most widely adopted strategy in the 

literature because of its improved performance over the 

other two options. We also observed that the attention 

mechanism is being increasingly adopted as a technique to 

facilitate deep multisource learning. The attention 

mechanism was first introduced for machine translation 

(Bahdanau et al., 2014). This mechanism can be intuitively 

explained using human biological systems. For example, 

people tend to focus selectively on parts of an image while 

ignoring irrelevant information, which can assist in 

perception (Xu et al., 2015). This mechanism is 

implemented as an allocation of attention weights among 

different portions of the input data (Figure 2). 
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Table 3. Selected Health Research on Deep Multitask Learning 

Year Author Data Source Tasks 
Multitask Learning 
Strategy 

Loss Function 

2020 Wang et al. OCT images 

Visual field 
measurement; 

glaucoma diagnosis 

Feature transformation 
Direct sum of the 
tasks 

2020 Davoodnia et al. Pressure data 
Subject identification; 
BMI estimation 

Feature transformation 
Direct sum of the 
tasks 

2019 Lang et al. Impulse signals 
Motion classification; 
Person identification 

Feature transformation 
Direct sum of the 
tasks 

2019 Shi et al. EHR 50 disease diagnosis Feature transformation 
Direct sum of the 
tasks 

2018 Chen EEG signals 
Motion intention 
recognition (5 tasks) 

Feature transformation Not mentioned 

2018 Liao et al. 
Gene expression 
data 

12 types of cancer 
diagnosis 

Feature transformation Not mentioned 

2016 Moeskops et al. Radiology images 
Medical image 
segmentation 

Feature transformation Not mentioned 

Note: EEG: electroencephalography; BMI: body mass index; OCT: optical coherence tomography 

 

Table 4. Selected Health Research on Deep Multisource Learning 

Year Author Data sources 
Multisource learning 
strategy 

Task 

2020 Zhou et al. 3D MRI image Early fusion with attention Brain tumor segmentation 

2020 Zhang and Shi MRI and PET image Early fusion with attention Alzheimer’s disease diagnosis 

2020 Sun et al. Video, audio, and text 
Early fusion with attention, late 
fusion 

Emotion recognition 

2020 Ghaleb et al. Video and audio Late fusion Emotion recognition 

2019 Ma et al. Wearable sensor Early fusion with attention Human activity recognition 

2019 Xue et al. Wearable sensor Early fusion with attention Human activity recognition 

2019 Zhang et al. 
Wearable, ambient 
sensors; audio; WiFi, app 
log and screen 

Early fusion with attention Mood instability inference 

2019 Luo et al. 
Disease and gene 
information 

Early fusion 
Disease-gene association 
prediction 

2019 de Jong Radar and video  
Early fusion, raw data fusion, 
late fusion 

Human activity recognition 

2019 Qiao et al. EHR Early fusion Disease diagnosis prediction 

2018 Hu et al. EMG Early fusion with attention Gesture recognition 

2018 Yuan et al. EEG Early fusion with attention Seizure detection 

2018 Xue et al. Chest X-ray Raw data fusion Radiology report generation 

2018 Vlachostergiou et al. Radiology (brain images) Early fusion PD prediction 

2017 Radu et al. 
Wearable, ambient, 
physiological sensor 

Early fusion, raw data fusion Activity and context recognition 

2017 Zou et al. fMRI and sMRI Raw data fusion 
Diagnosis of hyperactivity 
disorder 

Note: EMG: electromyography; EEG: electroencephalography; PSG: polysomnography; fMRI: functional magnetic resonance imaging; sMRI: 
structural magnetic resonance imaging; PET: positron emission computed tomography 
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Figure 1. Illustration of the Structures of Deep Multisource Learning Strategies (left: raw data fusion, 
middle: early fusion; right: late fusion) 

 

  

Figure 2. Illustration of Attention-Based Early Fusion 

Note: 𝒅1, 𝒅2, 𝒅3: raw data from sources 1, 2, 3, respectively; 𝒇: shared features across the three sources; 𝒇1, 𝒇2, 𝒇3: learned features for sources 1, 
2, 3, respectively; 𝑦: prediction task result; 𝑦1, 𝑦2, 𝑦3: prediction results of the models corresponding to sources 1, 2, 3, respectively; 𝐴1, 𝐴2, 𝐴3: 
attention weights corresponding to 𝒇1, 𝒇2, 𝒇3, respectively. 𝐴1 + 𝐴2 + 𝐴3 = 1. Arrows denote the flows of data (tensors) in a deep learning model. 

 

While all attention weights add up to 1, a larger attention weight 

is allocated if that portion of data is more relevant to the model 

output (e.g., the words or sentences in EHR that are more 

relevant to the diagnosis of a disease, or the type of 

experimental trial that is more relevant to the assessment of a 

chronic condition). As such, the attention mechanism 

significantly improves the interpretability, accountability, and 

transparency of deep multisource learning models, which is 

critical for applications that influence human lives such as 

chronic condition severity assessment (Chaudhari et al., 2019). 

Extant studies with multiple data sources typically allocate 

attention weights among their data sources, i.e., each data 

source is assigned a scalar attention weight (e.g., Wu et al., 

2018; Gao et al., 2020). In this manner, the attention allocation 

can also be viewed as a “criterion” assessing the quality of the 

features learned from each data source (e.g., assessing the 

quality of 𝒇1, 𝒇2, 𝒇3 in Figure 1). A larger attention weight is 

allocated to the data source with features that contribute more 

to the model output (e.g., the assessment score of chronic 

condition severity). Given such attention weights, multiple data 

sources could “compete” with each other for a larger attention 

weight, with each source forcing its model branch to learn 

features that are more relevant to the model output, thus 

improving overall model performance. However, to the best of 

our knowledge, none of the extant studies have proposed an 

explicit attention competition mechanism in a deep multisource 

learning model. One of the potential solutions to this issue is 

adversarial learning. 

Adversarial Learning in Deep Learning 

Adversarial learning in deep learning refers to a learning 

process in which multiple components in a deep learning model 

compete with each other in a zero-sum game to improve their 

performance (Goodfellow et al., 2014). Each component in the 

competition is designed to update its parameters in the direction 

that “wins more” in the zero-sum game. Over multiple 

iterations, a Nash equilibrium is achieved, with overall model 

performance improved. The most well-known example of 

adversarial learning is generative adversarial networks (GAN) 

(Goodfellow et al., 2014), where the competition involves a 

generator and a discriminator. The generator aims to learn the 

data distribution in the dataset and generate synthetic data 
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samples to confuse the discriminator. The discriminator aims to 

discriminate synthetic data samples from real data samples and 

to not be confused by the generator. In the adversarial learning 

process, the generator and the discriminator are alternately 

improved in multiple iterations until the point at which the 

discriminator can no longer discriminate synthetic data 

samples. At this point, the performance of both the generator 

and the discriminator is improved, and the two networks can be 

used for downstream tasks (e.g., the generator can be used to 

generate synthetic data similar to real data and the discriminator 

can be used for classification tasks). Adversarial learning has 

been a hot research topic in the deep learning community. A 

summary of recent health studies applying adversarial learning 

is listed in Table 5, based on the data source, task, and model 

components competing with each other. 

Prior adversarial learning studies on health applications used 

radiological images, EHR, and wearable sensors as data sources. 

Most of the model component competitions occurred between a 

generator and a discriminator, which is a typical setting for GAN. 

To the best of our knowledge, no prior studies have applied 

adversarial learning to an attention-based deep multisource 

learning model in the form of an adversarial attention 

competition mechanism to improve the features being learned 

from each data source as well as the overall model performance.  

Research Gaps and Questions 

Based on the above literature review, we identify the 

following research gaps. First, past studies on wearable 

sensor-based chronic condition severity assessment manually 

designed and selected the feature sets for their context. While 

valuable, this process is laborious and ad hoc, and the 

extracted features could lead to inconclusive results. Second, 

although past studies have proposed models that employ deep 

multitask learning and attention-based deep multisource 

learning, such models do not comprise an attention 

competition mechanism for more relevant features being 

learned from each data source. Based on the above research 

gaps, we ask the following research questions: 

• How can we design a deep multitask multisource 

learning framework for wearable sensor-based chronic 

condition severity assessment? 

• How can we employ the attention mechanism in the 

framework to provide insights into the data and improve 

model interpretability? 

• How can we adopt adversarial learning to improve the 

performance of attention-based deep multisource 

multitask learning? 

Research Design 

Guided by prior studies and the identified research gaps, we 

propose a novel adversarial attention-based deep multisource 

multitask learning (AADMML) framework for wearable 

sensor-based chronic condition severity assessment. Our 

research design comprises three major components: (1) data 

collection and preprocessing, (2) the proposed AADMML 

framework, and (3) model evaluation using benchmark 

experiments and case studies. Each is discussed in detail in the 

following subsections. 

Data Collection and Preprocessing 

A large, publicly available dataset, the mPower dataset (Bot et 

al., 2016), is used as the research testbed. mPower is an 

observational smartphone-based study developed using 

Apple’s ResearchKit library to evaluate the feasibility of 

remotely collecting sensor data to reflect people’s PD 

severities. We obtained the following categories of data in the 

mPower dataset: (1) demographics, (2) PD severity 

assessment survey, (3) accelerometer data of walking and 

standing experiments (denoted as acc-walk and acc-stand, 

respectively), (4) gyroscope data of walking and standing 

experiments (denoted as gyro-walk and gyro-stand, 

respectively), and (5) microphone data of a speech 

experiment. The PD severity assessment survey includes a 

subset of questions from the movement disorder society-

sponsored universal Parkinson’s disease rating scale (MDS-

UPDRS, Goetz et al., 2008). More specifically, the survey 

consists of 6 out of the 13 questions in MDS-UPDRS Part 1: 

Non-Motor Aspects of Experiences of Daily Living (nM-

EDL), and 10 out of the 13 questions in MDS-UPDRS Part 2: 

Motor Aspects of Experiences of Daily Living (M-EDL). 

Each question has a numerical response score between 0 

(normal) and 4 (severe). Since the literature has suggested that 

the sum of response scores of nM-EDL questions and of M-

EDL questions can be used separately to assess two related 

aspects of PD (Martinez-Martin et al., 2015), we chose “nM-

EDL” and “M-EDL” as the two PD severity assessment tasks 

for this study. 

Regarding the walking and standing experiments, each test 

instance corresponds to two experimental trials: (1) 20-step 

outbound walking in a straight line, and (2) 30-second 

standing still. Each experimental trial generates an 

accelerometer sample and a gyroscope sample, each of which 

is a series of data points. A data point is a single reading from 

a tri-axial accelerometer or gyroscope, which is a vector with 

three components corresponding to the three orthogonal axes 

(x, y, z) in the three-dimensional physical space. 
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Table 5. Selected Health Research Using Adversarial Learning 

Year Author Data source Task 
Model components competing with 
each other  

2020 Ghassemi et al. Brain MRI Brain tumor classification Generator vs. discriminator 

2020 de Bois et al. 
Structural 
variables 

Glucose Prediction Generator vs. discriminator 

2020 Sun et al. Breast MRI Generating synthetic MRI Generator vs. discriminator 

2019 Balabka Wearable sensor Human activity recognition Generator vs. discriminator 

2019 Jin et al. Brain CT Transforming CT to MRI images Generator vs. discriminator 

2019 Tang et al. Chest X-ray 
Generating synthetic X-ray 
images 

Generator vs. discriminator 

2018 Sun et al. EHR 
Identifying susceptible portions 
of EHR 

Generator vs. generator 

2018 Wang et al. Wearable sensor 
Generating synthetic wearable 
sensor data 

Generator vs. discriminator 

2017 Choi EHR Generating synthetic EHR Generator vs. discriminator 

2017 Hwang et al. EHR Disease prediction Generator vs. discriminator 

Note: CT: computed tomography  

 

A data point collected at time 𝑖, 𝒂𝑖 , is represented as 𝒂𝑖 =
[𝑎x,𝑖 𝑎y,𝑖 𝑎z,𝑖]𝑇 . 100 data points were collected in one 

second. As a data sample is a series of data points, it can be 

represented as 𝒙 = [𝒂1 𝒂2 ⋯ 𝒂𝑙], where 𝑙 is the length 

(the number of data points) in data sample 𝒙, which depends 

on the amount of time the subject needed to complete the 

experimental trial. We used the accelerometer and gyroscope 

samples collected from the walking and standing experiments 

as four data sources in this study (acc-walk, acc-stand, gyro-

walk, gyro-stand), since walking patterns and standing 

stability are critical factors that can reflect PD severity 

(Hubble et al., 2015) and accelerometers and gyroscopes 

reflect different aspects of motion patterns (translational and 

rotational, respectively). 

Regarding the speech experiment, each subject was instructed 

to say “five, four, three, two, one” loudly and the smartphone 

microphone recorded the waveform audio data. Following 

state-of-the-art practices in audio processing (Zeng et al., 

2019) and deep learning (Deng & Yu, 2014), we transformed 

the waveform audio data into mel-scaled spectrograms as a 

preprocessing step. Spectrograms are matrices that describe 

how sound frequencies change temporally. Each matrix entry 

is an amplitude value for a certain sound frequency at a certain 

time. The spectrograms were generated using the librosa 

package in Python (McFee et al., 2015). In alignment with the 

notation for accelerometer and gyroscope samples, we used 

𝑎𝑓,𝑖 to denote the element at the 𝑓th row and the 𝑖th column in 

a spectrogram matrix, which represents the amplitude of the 

𝑓 th sound frequency at time 𝑖 . Hence, 𝒂𝑖  is represented as 

𝒂𝑖 = [𝑎1,𝑖 ⋯ 𝑎𝐹,𝑖]𝑇where 𝐹 is the total number of sound 

frequencies. Resembling accelerometer and gyroscope data 

samples, audio data samples can also be represented as 𝒙 =
[𝒂1 𝒂2 ⋯ 𝒂𝑙],  where 𝑙  is the time length of the 

spectrogram. 

To summarize, each instance contains five data sources (acc-

walk, acc-stand, gyro-walk, gyro-stand, and mic) and two 

assessment tasks (nM-EDL and M-EDL). The dataset consists 

of 2,471 instances. A summary of descriptive statistics can be 

found in Table 6. 

We split the dataset into a 90% experiment subset and a 10% 

hold-out subset. The 90% experiment subset is used for 

model training, validation, and testing, while the 10% hold-

out subset is reserved for case studies using trained models. 

This split can help avoid biased results. To preserve the 

information in wearable sensor data while speeding up the 

training process, we padded zeros in all data samples such 

that all accelerometer and gyroscope samples had a length of 

3,840, which exceeds their original maximum length. For 

spectrograms, we padded zeros such that all the samples had 

a duration of 12 seconds. With the default setting in the 

librosa package (n_mels = 128), we obtained a spectrogram 

with size 128×1034 for each sample. Zero-padding is a 

widely adopted technique in deep learning for processing 

data samples of varying lengths (Yenter & Verma, 2017; Bin 

et al., 2018). In the next subsection, we discuss the four 

stages of our AADMML framework. 
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Table 6. Dataset Descriptive Statistics 

 N = 2,471 Mean SD Max. Min. 

Demo-
graphics 

Age 51.44 17.66 81 18 

Gender Male: 69.4%; Female: 30.6% 

MDS-
UPDRS 
Survey 

Task 1: nM-EDL 4.88 3.63 18 0 

Task 2: M-EDL 4.55 5.17 24 0 

Wearable 
sensor data 

duration 

Acc-walk (length) 1,985 700 3,195 568 

Acc-stand (length) 3,041 42 3,239 2,719 

Gyro-walk (length) 1,890 676 3,062 550 

Gyro-stand (length) 2,923 111 3,140 2,566 

Mic (seconds) 9.53 0.28 11.36 7.04 

Note: SD: standard deviation; Max.: maximum; Min.: minimum 

 

The Adversarial Attention-based Deep 
Multisource Multitask Learning (AADMML) 
Framework 

Figure 3 illustrates the proposed AADMML framework. Our 

main methodological contribution is Stage 4: Adversarial 

Attention Competition, which will be discussed in detail later. 

The AADMML framework is flexible and adaptive to the 

actual number of data sources (m) to learn from and the actual 

number of tasks (n) to assess. Conceptually, there are four 

stages in the AADMML framework. Stage 1 is designed for 

feature learning. A separate CNN-LSTM is applied to each 

data source to extract source-specific features from the m 

sources of complex data (e.g., accelerometers, gyroscopes, 

and microphones) (Trigeorgis et al., 2016; Zeng et al., 2019). 

Stage 2 is designed to learn the attention allocation across the 

data sources for each task, which can be interpreted as the 

relative importance of each data source. At the end of Stage 2, 

the features learned in Stage 1 and the attention weights in 

Stage 2 are integrated as a set of task-specific features. Stage 

3 is multitask learning for the 𝑛 related tasks (e.g., two related 

aspects of a chronic condition). Stage 4 is our proposed 

adversarial attention competition mechanism, which allows 

each source’s attention to compete with each other, thus 

improving the quality of the learned source-specific features 

in Stage 1. We discuss the details in each stage in turn. 

We introduce a series of mathematical notations to improve 

description clarity. We use X  = {𝑿(1), … , 𝑿(𝑑), … , 𝑿(𝐷)}  to 

denote the set of multisource data that include accelerometer 

signals, gyroscope signals, and audio spectrograms, where 𝐷 

is the total number of instances and 𝑿(𝑑) is the 𝑑th instance. 

We let 𝑿(𝑑) = [𝒙1
(𝑑)

, … , 𝒙𝑖
(𝑑)

, ⋯ , 𝒙𝑚
(𝑑)

], where 𝑚 is the total 

number of data sources and 𝒙𝑖
(𝑑)

 is the data sample from the 

𝑖th source. As defined before, each 𝒙𝑖
(𝑑)

 is a series of tri-axial 

acceleration values, tri-axial gyroscope values, or a list of 

amplitudes of sound frequencies, i.e., 𝒙𝑖
(𝑑)

=

[𝒂𝑖,1
(𝑑)

, 𝒂𝑖,2
(𝑑)

, ⋯ , 𝒂𝑖,𝑙
(𝑑)

]. We use Y = {𝒚(1), … , 𝒚(𝑑), … , 𝒚(𝐷)} to 

denote the set of ground-truth assessment scores, so 𝒚(𝑑) =

[𝑦1
(𝑑)

, … , 𝑦𝑗
(𝑑)

, … , 𝑦𝑛
(𝑑)

], where 𝑛 is the total number of tasks 

and 𝑦𝑗
(𝑑)

 is the assessment score of the 𝑗th task. 

Stage 1: Feature Learning 

Because of the characteristics of wearable sensor data, 

features need to be learned from raw data before they can be 

used for assessment tasks. Both accelerometer, gyroscope data 

and spectrograms can be formalized as matrices, where each 

row of the matrix is a temporal sequence and each column 

shows patterns across sensor axes (accelerometers or 

gyroscopes) or a range of sound frequencies (spectrograms). 

As CNN excels in automatic feature extraction from local 

signals and LSTM is effective in the temporal modeling of 

long sequences (LeCun et al., 2015), we propose a CNN-

LSTM that leverages the advantages of both CNN and LSTM 

for feature learning. For simplicity, we discuss the CNN-

LSTM at an abstract level. We consider a data sample, 𝒙𝑖
(𝑑)

, 

as an example. We first segment 𝒙𝑖
(𝑑)

 into multiple 

consecutive snippets 𝒔, where 𝒔 is also a series of tri-axial 

acceleration values, tri-axial gyroscope values, or a list of 

amplitudes of sound frequencies, i.e., 𝒙𝑖
(𝑑)

=

[𝒔𝑖,1
(𝑑)

, … , 𝒔𝑖,𝑞
(𝑑)

, ⋯ , 𝒔𝑖,𝑟
(𝑑)

], where 𝑟 is the number of snippets that 

𝒙𝑖
(𝑑)

 is segmented into. The CNN processes each snippet 𝒔𝑖,𝑞
(𝑑)

 

and outputs a feature representation 𝒐𝑖,𝑞
(𝑑)

. 
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Figure 3. The AADMML Framework 

 

After all snippets are processed by the CNN, we obtain a 

sequence of feature representations, [𝒐𝑖,1
(𝑑)

, … , 𝒐𝑖,𝑞
(𝑑)

, ⋯ , 𝒐𝑖,𝑟
(𝑑)

]. 

The LSTM takes this sequence to analyze its sequential 

information and outputs 𝑹𝑖
(𝑑)

, which is the learned features of 

sample 𝒙𝑖
(𝑑)

. The detailed specifications of CNN and LSTM 

can be found in Appendix A. 

Stage 2: Attention-Based Early Fusion 

In this stage, we aim to learn the task-specific attention 

allocation for each data source, which reflects the quality of 

the learned features (Ma et al., 2019; Xue et al., 2019). We 

show the attention allocation process for task 𝑗  (𝑗 =
1,2, … , 𝑛) as all tasks follow the same process. As suggested 

by Ma et al. (2019), with the learned features of all data 

sources (𝑹1
(𝑑)

, … , 𝑹𝑖
(𝑑)

, … , 𝑹𝑚
(𝑑)

) as the input, the attention 

weight for source 𝑖, 𝐴𝑗,𝑖
(𝑑)

, is given by: 

𝑢𝑗,𝑖
(𝑑)

= tanh(𝑾𝑗,𝑖
a 𝑹𝑗,𝑖

(𝑑)
+ 𝑏𝑗,𝑖

a ) , 

𝐴𝑗,𝑖
(𝑑)

=
exp(𝑢𝑗,𝑖

(𝑑)
𝑤𝑗)

∑ exp (𝑢𝑗,𝑖
(𝑑)

𝑤𝑗)𝑚
𝑖=1

 (1) 

where {𝑾𝑗,𝑖
a , 𝑏𝑗,𝑖

a , 𝑤𝑗}  are the parameters of the attention 

allocation process. Then, the 𝑚-source features and attention 

weights ( 𝑹1
(𝑑)

, … , 𝑹𝑖
(𝑑)

, … , 𝑹𝑚
(𝑑)

; 𝐴𝑗,1
(𝑑)

, … , 𝐴𝑗,𝑖
(𝑑)

, … , 𝐴𝑗,𝑚
(𝑑)

) are 

summarized as a set of integrated features, 𝑪𝑗
(𝑑)

, as follows: 

𝑪𝑗
(𝑑)

= ∑ 𝐴𝑗,𝑖
(𝑑)

∙ 𝑹𝑖
(𝑑)

𝑚

𝑖=1

. 

𝑪𝑗
(𝑑)

 is then used in the next stage for the learning of task 𝑗. 

Stage 3: Multitask Learning 

We use two stacked fully connected layers to get the predicted 

assessment score of task 𝑗, 𝑦̂𝑗
(𝑑)

: 

𝑭𝑗
(𝑑),1 = sigmoid(𝑾𝑗

1 ∙ 𝑪𝑗
(𝑑)

+ 𝑏𝑖
1), 

𝑭𝑗
(𝑑),2 = sigmoid(𝑾𝑗

2 ∙ 𝑭𝑗
(𝑑),1 + 𝑏𝑗

2), 

𝑦̂𝑗
(𝑑)

= 𝑾𝑗
L ∙ 𝑭𝑗

(𝑑),2 + 𝑏𝑗
L, 

where {𝑾𝑗
1, 𝑏𝑖

1} are the parameters for the first layer, 𝑭𝑗
(𝑑),1

 is 

the output of the first layer, {𝑾𝑗
2, 𝑏𝑗

2} are the parameters for 

the second layer, 𝑭𝑗
(𝑑),2

 is the output of the second layer, and 

{𝑾𝑗
L, 𝑏𝑗

L} are the parameters for the final output layer. 

The selection of the loss function depends on the nature of the 

tasks. As is common practice for regression tasks, we use the 

mean squared error (MSE) loss functions to evaluate model 

outputs for each individual task and use the sum of all tasks’ 

weighted MSE losses as the total loss function (Lang et al., 
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2019; Wu et al., 2019). As such, the total loss for the 𝑑 th 

instance, ℒ (𝑑), is: 

ℒ (𝑑) = ∑ 𝜔𝑗(𝑦̂𝑗
(𝑑)

− 𝑦𝑗
(𝑑)

)
2

𝑛

𝑗=1

(2) 

where 𝑦̂𝑗
(𝑑)

 is the model-predicted assessment score for task 𝑗, 

𝑦𝑗
(𝑑)

 is the ground-truth assessment score for task 𝑗, and 𝜔𝑗 is 

the loss weight for task 𝑗. By default, all 𝜔𝑗 are set to 1. 

Stage 4: Adversarial Attention Competition 

Our design of the adversarial attention competition 

mechanism is inspired by adversarial learning. In an attention-

based multisource learning model, each data source has a 

model branch that extracts source-specific features from input 

data. In our study, an example of such a model branch is the 

CNN-LSTM corresponding to each data source in Stage 1. For 

each task, attention weights adding up to 1 are allocated 

among the data sources. We design the competition such that 

each data source aims to increase its allocated attention 

weight. As a data source’s attention weight reflects the relative 

relevance of that source, the model branch corresponding to 

the data source must adjust its parameters such that more 

relevant features can be extracted from the data source in order 

to increase its attention weight. Given that all attention 

weights must add up to 1, an increase in one data source’s 

attention weight will result in decreases in other data sources’ 

attention weights. Consequently, to increase their attention 

weights, the other data sources also update their 

corresponding model branches to extract more relevant 

features from the data sources. The relevancy of features 

extracted from each data source is increasingly improved over 

multiple training iterations. Compared with a model without 

adversarial attention competitions (model parameters are only 

updated with the guidance (back-propagation) of task loss 

functions), the AADMML’s parameters are updated with the 

guidance of both task loss functions and adversarial attention 

competitions, which can potentially reduce the number of 

training iterations and improve model performance. 

We implement the adversarial attention competition 

mechanism as an iterative process. In each iteration, each data 

source alternately updates the parameters of its model branch 

in the direction of increasing its attention weight. As we have 

𝑚 sources in total, we randomly select the order in which the 

𝑚  sources update their parameters. To improve training 

efficiency, we perform adversarial attention competitions 

once after the model parameters have been updated by the 

traditional loss function back-propagation for 𝐾 rounds. We 

further refer to 𝐾 as the “adversarial learning factor,” which is 

a hyperparameter to be set. Although this is a zero-sum game 

(all attention weights have to add up to 1), each data source 

learns more relevant features after the adversarial attention 

competition process, thus improving overall model 

performance.  

As described above, the adversarial attention competition 

mechanism is part of the parameter learning process of the 

AADMML framework. Algorithm 1 (see below) presents the 

complete pseudocode for the AADMML parameter learning 

algorithm. Lines 15 to 21 summarize the adversarial attention 

competition, which is our core methodological novelty. We 

use the widely applied Adam optimizer (a gradient descent-

based optimizer) to iteratively learn model parameters, and 

use the batch training technique to improve training 

efficiency. We applied L2-regularization on all deep learning 

parameters to avoid overfitting as suggested by the literature 

(Goodfellow et al., 2016). Full model specifications can be 

found in Appendix A. 

Experiment and Case Study Design 

To adhere to computational design science paradigm 

guidelines, we systematically evaluated our proposed 

AADMML framework for chronic condition severity 

assessment with three experiments and three case studies. 

Experiment 1 evaluated AADMML’s ability to assess PD 

severity against state-of-the-art benchmark models, including 

feature-based machine learning models and alternative deep 

multisource and/or multitask learning models. For feature-

based machine learning models, we compiled the feature set 

by selecting the most common features from the PD literature 

(Hubble et al., 2015), which can be found in Appendix B. For 

deep learning models, we evaluated different multisource 

learning strategies (late fusion, early fusion, attention-based 

early fusion, and adversarial attention-based early fusion) in 

deep multitask or single-task learning settings. A detailed 

description of the benchmark models can be found below in 

Table 7. 

Experiment 2 is a sensitivity analysis that evaluates how the 

selection of hyperparameters affects AADMML’s 

performance. To avoid exponential numbers of 

hyperparameter combinations, we used our proposed 

AADMML as a baseline (model specifications in Appendix 

A) and adjusted only one type of hyperparameter at a time. 

We adjusted the size of CNN kernels, number of CNN layers, 

size of LSTM hidden neurons, structure of LSTM, learning 

rate, dropout rate, adversarial learning factor, relative weight 

of Task 1 loss function, and weight of parameter L2-

regularization in the AADMML model, as suggested by the 

literature (Goodfellow et al., 2016). Detailed description of the 

sensitivity analysis can be found in Table 8. 
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Algorithm 1: AADMML Parameter Learning Algorithm 

Input: (X, Y ); total number of batches, 𝐵; number of instances in each batch, 𝐸; adversarial learning factor, 𝐾; parameter L2-

regularization weight, 𝜆 

Output: 𝚯 = {𝜽1, 𝜽2, … , 𝜽𝑚, 𝝓1, 𝝓2, … , 𝝓𝑛 , 𝝍}, where 𝜽𝑖 refers to the parameters of the 𝑖th source’s model branch in Stage 1, 𝝓𝑗 

refers to the 𝑗th task’s parameters in Stages 2, and 𝝍 refers to the parameters in Stage 3. 

Initialize 𝚯 

1. while not converged do 

2.     for 𝑏 = 1, … , 𝐵 do 

3.         for 𝑘 = 1, … , 𝐾 do 

4.             for 𝑒 = 1, … , 𝐸 do 

5.                 Compute loss ℒ(𝑒) by Equation (2)  

6.                 for 𝑗 = 1, … , 𝑛 do 

7.                     for 𝑖 = 1, … , 𝑚 do 

8.                         Compute 𝐴𝑗,𝑖
(𝑒)

 by Equation (1) 

9.                     end for (𝑖) 

10.                 end for (𝑗) 

11.             end for (𝑒) 

12.             Update 𝚯 ← Adam (∇𝚯
1

𝐸
∑ ℒ (𝑒)𝐸

𝑒=1 + 𝜆‖𝚯‖2
2, 𝚯)  

13.         end for (𝑘) 

14.         # Adversarial Attention Competition Mechanism 

15.         for 𝑖 = 1, … , 𝑚 do 

16.             Compute 𝐴𝑖
(𝑒)

← ∑ 𝐴𝑗,𝑖
(𝑒)𝑛

𝑗=1  

17.         end for (𝑖) 

18.         Determine the source updating order 𝐼 ← Permute(1,2, … , 𝑚) 

19.         for 𝑖 in 𝐼 do 

20.             Update 𝜽𝑖 ← Adam (∇𝜽𝑖

1

𝐸
∑ (−𝐴𝑖

(𝑒)
)𝐸

𝑒=1 , 𝜽𝑖) by Equation (1) 

21.         end for (𝑖) 

22.     end for (𝑏) 

23. end while 

24. return 𝚯 

 

Table 7. Summary of Experiment 1 (Comparison against Benchmark Models) 

Category Method Description 

Feature-based, 
nonensemble 

Decision tree (DT) 

Nonensemble and ensemble machine learning models. 
A set of features (Appendix B) is extracted from each 
data source. Features extracted from different sources 
are used together. A separate model is trained for 
each task. 

K-nearest neighbors (KNN) 

Support vector machines (SVM) 

Feature-based, 
ensemble 

Extra-trees (ETS) 

Random forest (RF) 

AdaBoost (ADA) 

Gradient boosting model (GBM) 

XGBoost (XGB) 

Nonensemble voting (NEV) 
An ensemble machine learning model by averaging the 
results from the above non-ensemble models (DT, 
KNN, SVM). 
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Deep learning 

Single-task, late fusion (STLF) 

Deep learning models. For single-task models, a 
separate model is trained for each task. For multitask 
models, a joint model is trained for all tasks. We 
investigate different multisource strategies (late fusion, 
early fusion, and attention-based early fusion). In 
particular, MTAEF is AADMML without the adversarial 
attention competition mechanism. 

Single-task, early fusion (STEF) 

Single-task, attention-based early fusion 
(STAEF) 

Multitask, late fusion (MTLF) 

Multitask, early fusion (MTEF) 

Multitask, attention-based early fusion 
(MTAEF) 

 

Table 8. Summary of Experiment 2 (Sensitivity Analysis) 

Hyperparameter Options Model name Hyperparameter Options Model name 

Size of CNN kernels 

8 HP-CNN (8) 

Number of CNN layers 

1 HP-CNN-L1 

16 HP-CNN (16)  2 HP-CNN-L2 

32 HP-CNN (32) 3 HP-CNN-L3 

64 HP-CNN (64) 4 HP-CNN-L4 

Size of LSTM hidden 
neurons 

8 HP-LSTM (8) 

Structure of LSTM 

1-layer LSTM HP-LSTM-L1 

16 HP-LSTM (16)  2-layer LSTM HP-LSTM-L2 

32 HP-LSTM (32) 1-layer Bi- LSTM HP-BLSTM-L1 

64 HP-LSTM (64) 2-layer Bi-LSTM HP-BLSTM-L2 

Learning rate 

10-1 HP-LR-1 

Dropout rate 

0.00 HP-DR-0 

10-2 HP-LR-2 0.25 HP-DR-25 

10-3 HP-LR-3 0.50 HP-DR-50 

10-4 HP-LR-4 0.75 HP-DR-75 

Adversarial learning 
factor 

1 HP-AT-1 Relative weight of 
Task 1 loss function 
(Weight of Task 2 loss 
function as 1) 

0.5 HP-T1LF-0.5 

3 HP-AT-3 1.0 HP-T1LF-1.0 

5 HP-AT-5 1.5 HP-T1LF-1.5 

7 HP-AT-7 2.0 HP-T1LF-2.0 

Weight of parameter 
L2-regularization 

10-3 HP-WL2R-3  

10-4 HP-WL2R-4 

10-5 HP-WL2R-5 

10-6 HP-WL2R-6 

For Experiments 1 and 2, we applied ten-fold cross-validation 

on the experiment subset of mPower on all models for an 

objective assessment of model performance. The ten-fold 

cross-validation is done in the following manner: for each 

time, eight out of the ten folds of the experiment subset is the 

training set, one fold is the validation set, and the remaining 

fold is the test set. The above process is repeated ten times for 

cross-validation and the results we report are from the test set 

of each time. 

We report the following metrics: mean absolute error (MAE), 

root mean squared error (RMSE), logarithm mean absolute 

error (LMAE), and logarithm root mean squared error 

(LRMSE); all of these are commonly used metrics for 

regression tasks (Eigen et al., 2014; Kendall et al., 2017). If 

𝑦̂𝑗
(𝑑)

 is the model-predicted assessment score for task 𝑗 in the 

𝑑th instance, 𝑦𝑗
(𝑑)

 is the ground-truth assessment score for task 

𝑗 in the 𝑑th instance, and 𝐷 is the total number of instances, the 

above metrics are defined as follows: 

MAE𝑗 =
1

𝐷
∑|𝑦̂𝑗

(𝑑)
− 𝑦𝑗

(𝑑)
|

𝐷

𝑑=1

, RMSE𝑗 = √
1

𝐷
∑(𝑦̂𝑗

(𝑑)
− 𝑦𝑗

(𝑑)
)

2
𝐷

𝑑=1

, 

LMAE𝑗 =
1

𝐷
∑|log(𝑦̂𝑗

(𝑑)
+ 1) − log(𝑦𝑗

(𝑑)
+ 1)|

𝐷

𝑑=1

,  

         LRMSE𝑗 = √
1

𝐷
∑ (log(𝑦̂𝑗

(𝑑)
+ 1) − log(𝑦𝑗

(𝑑)
+ 1))

2
𝐷

𝑑=1

. 

For all four metrics, smaller is better. We also ran paired t-tests 

to identify statistically significant differences between 

AADMML and benchmark models at the p-value thresholds of 

0.05*, 0.01**, and 0.001***. 

In Experiment 3, we specifically investigated what the attention 

mechanism and the adversarial attention competition 

mechanism bring to a deep multisource multitask learning 
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framework. We repeated the ten-fold cross-validation in 

Experiment 1 ten times and plotted the averaged changes in loss 

function values with increasing numbers of training iterations 

for AADMML, the same model without adversarial attention 

competition (MTAEF), and MTAEF without the attention 

mechanism (MTEF). In addition, we showed the minimum 

validation losses and the numbers of model training iterations 

where the minimum validation losses are achieved for each 

model, ran paired t-tests (AADMML vs. MTAEF and 

AADMML vs. MTEF) to show whether AADMML 

significantly outperformed the others with regard to validation 

losses, and discussed the implications. We also demonstrate 

how the attention weights change for AADMML and MTAEF 

in Appendix E (MTEF does not involve attention weights). 

The three case studies demonstrate the practical utility of the 

proposed AADMML. Case Study 1 presents two examples that 

the AADMML accurately assessed the subjects’ PD severity. 

We show the wearable sensor data diagrams of the five sources, 

allocated task-specific attention weight on each source, PD 

severity assessment results, and ground-truth PD severity 

scores. We also discuss how the attention weights can help 

improve model interpretability. 

Case Study 2 applies AADMML in the context of identifying 

early-stage PD patients because of its significance in PD 

treatment and progression alleviation. We formularize the 

early-stage PD identification problem as follows: given a 

population of subjects with no PD or mild PD, can a model 

accurately identify those subjects with mild PD based on 

wearable sensor data? We then discuss how much net monetary 

benefit would be generated by identifying mild PD and 

implementing subsequent proper management based on the 

results generated by AADMML and other best-performing 

models. We controlled the false alarm rates (i.e., the proportions 

of false reported mild PD subjects out of all reported mild PD 

subjects) and then presented the averaged recall rate (i.e., the 

proportion of true reported mild PD subjects out of all mild PD 

subjects) to estimate the number of mild PD subjects that each 

model can identify. 

Experiment and Case Study Results 

Experiment 1: AADMML vs. State-of-the-art 
Benchmark Models 

Experiment 1 benchmarks AADMML’s performance in 

assessing nM-EDL and M-EDL against state-of-the-art 

benchmark models, including feature-based machine learning 

models and deep learning models. Table 9 presents the results. 

Best-results are highlighted in boldface. We also demonstrate 

how AADMML performs with different demographic groups 

in Appendix H. 

In Task 1: Assessment of nM-EDL, the proposed AADMML 

outperformed all feature-based and other deep learning 

models in all metrics. In Task 2: Assessment of M-EDL, 

AADMML outperformed all feature-based and other deep 

learning models in MAE and LRMSE. The improved 

performance of AADMML over feature-based models shows 

the advantage of deep learning’s automatic feature extraction 

without manual design and selection of feature sets. The 

improved performance of AADMML over other deep 

learning models (e.g., MTAEF, which is AADMML without 

adversarial attention competitions) provides evidence that 

adversarial learning further improves state-of-the-art 

attention-based deep multisource multitask learning, leading 

to a more accurate assessment of PD severity. 

Experiment 2: Sensitivity Analysis of 
AADMML 

In Experiment 2, we adjusted the hyperparameters in the 

proposed AADMML and tested the model performance after 

the adjustments. The results are summarized in Table 10. The 

model names and results in boldface indicate the 

hyperparameters we chose among the different options. The 

significance levels are calculated against the chosen 

hyperparameters. For comparison, the sensitivity analysis 

results of select feature-based and deep learning benchmarks 

can be found in Appendix F. 

We observe that hyperparameters do influence AADMML 

model performance, although none of them are decisive 

factors. Meanwhile, some options of hyperparameters 

demonstrate advantages consistently in most evaluation 

metrics (e.g., choosing a learning rate of 10-3 generally leads 

to improved performance). We hope this practice can help IS 

researchers interested in wearable sensor data and deep 

learning to design deep learning models. 

Experiment 3: Changes in Loss Function 
Values in Model Training 

In Experiment 3, we plotted the averaged values of loss 

functions corresponding to both tasks (Task 1: nM-EDL; Task 

2: M-EDL) with increasing numbers of iterations in the 

training of AADMML, MTAEF, and MTEF to investigate the 

effect of adversarial attention competition and attention 

weights in general. Results can be found in Figure 4.  
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Table 9. PD Severity Assessment Results against Benchmark Models 

Category Model 
Task 1: nM-EDL Task 2: M-EDL 

MAE RMSE LMAE LRMSE MAE RMSE LMAE LRMSE 

Feature-
based, 

Nonensemble 

DT 2.067*** 3.367*** 0.309*** 0.506*** 2.662*** 4.953*** 0.501 0.743 

KNN 2.235*** 3.947*** 0.348*** 0.538*** 2.908*** 4.848*** 0.488 0.736 

SVM 2.856*** 3.855*** 0.358*** 0.530** 3.794*** 5.549*** 0.765*** 0.907*** 

Feature-
based, 

ensemble 

ETS 1.600 2.372** 0.316* 0.512* 2.107* 3.075** 0.713*** 0.895*** 

RF 1.538 2.328* 0.325** 0.512* 2.144** 3.096* 0.721*** 0.900*** 

ADA 2.835*** 3.565*** 0.380*** 0.517* 4.143*** 4.583*** 0.760*** 0.923*** 

GBM 1.589 2.603*** 0.383*** 0.547*** 2.224*** 3.732*** 0.528 0.741 

XGB 1.533 2.539*** 0.388*** 0.578*** 2.170** 3.062* 0.523 0.744 

NEV 2.390*** 3.117*** 0.346*** 0.516* 3.353*** 4.300*** 0.718*** 0.889*** 

Deep learning 

STLF 1.743** 2.429** 0.341*** 0.554*** 2.326*** 3.335*** 0.551** 0.782** 

STEF 1.759** 2.450** 0.337** 0.552*** 2.403*** 3.199** 0.536* 0.753 

STAEF 1.757*** 2.446*** 0.346*** 0.542*** 2.154** 2.991 0.532* 0.752 

MTLF 1.673* 2.438** 0.323* 0.531*** 2.276*** 3.007* 0.514 0.755* 

MTEF 1.570 2.410** 0.311 0.513* 1.998 2.932 0.516 0.742 

MTAEF 1.523 2.370* 0.318 0.515* 2.074* 2.859 0.518 0.735 

AADMML 1.515 2.140 0.302 0.491 1.974 2.867 0.507 0.732 

Note: *p < 0.05; **p < 0.01; ***p < 0.001 

 

Table 10. Sensitivity Analysis Results 

Model 
Task 1: nM-EDL Task 2: M-EDL 

MAE RMSE LMAE LRMSE MAE RMSE LMAE LRMSE 

HP-CNN (8) 1.764** 2.259 0.314 0.497 1.929 2.879 0.516 0.745 

HP-CNN (16)  1.515 2.140 0.302 0.491 1.974 2.867 0.507 0.732  

HP-CNN (32) 1.603 2.245 0.306 0.484 1.889 2.901 0.544* 0.725 

HP-CNN (64) 1.600 2.114 0.310 0.495 1.974 2.965 0.511 0.739 

HP-CNN-L1 1.567 2.208  0.294 0.502 1.978 2.905 0.509 0.739 

HP-CNN-L2 1.515 2.140 0.302 0.491 1.974 2.867 0.507 0.732 

HP-CNN-L3 1.543 2.178  0.301 0.492  1.934 2.840 0.511 0.735  

HP-CNN-L4 1.595 2.212 0.308 0.491 2.114* 2.893 0.515 0.751 

HP-LSTM (8) 1.517 2.237 0.308 0.513* 2.058 2.951 0.521 0.751 

HP-LSTM (16)  1.515 2.140 0.302 0.491 1.974 2.867 0.507 0.732 

HP-LSTM (32) 1.528 2.184 0.301 0.486 2.074 2.932 0.505 0.730 

HP-LSTM (64) 1.514 2.170 0.319 0.501 2.133* 2.973 0.524 0.745 

HP-LSTM-L1 1.698** 2.516** 0.314 0.515** 2.277*** 2.968 0.527 0.773** 

HP-LSTM-L2 1.581 2.345* 0.318 0.516** 2.047 3.001 0.514 0.761* 

HP-BLSTM-L1 1.652 2.249 0.295 0.503 1.920 2.907 0.507 0.717 

HP-BLSTM-L2 1.515 2.140 0.302 0.491  1.974 2.867 0.507 0.732 

HP-LR-1 1.805*** 2.268 0.333** 0.516** 2.160** 3.045 0.655*** 0.864*** 

HP-LR-2 1.542 2.176 0.315 0.491 2.020 2.915 0.513 0.742 

HP-LR-3 1.515 2.140 0.302 0.491  1.974 2.867 0.507 0.732 

HP-LR-4 1.511 2.144 0.307 0.498 2.002 2.930 0.516 0.749 

HP-DR-0 1.631 2.355* 0.324* 0.512* 2.087 3.085** 0.531 0.753 

HP-DR-25 1.576 2.192 0.310 0.506 2.010 2.978 0.524 0.730 

HP-DR-50 1.515 2.140 0.302 0.491  1.974 2.867 0.507 0.732 
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HP-DR-75 1.574 2.246 0.308 0.496 1.972 2.887 0.518 0.737 

HP-AT-1 1.613  2.297  0.322* 0.502 2.062  2.922  0.520  0.756 

HP-AT-3 1.544  2.131  0.309  0.491 2.007  2.858  0.515  0.741  

HP-AT-5 1.515 2.140 0.302 0.491  1.974 2.867 0.507 0.732 

HP-AT-7 1.520  2.129  0.305  0.483  1.979  2.861  0.512  0.743 

HP-T1LF-0.5 1.667* 2.295* 0.313 0.521** 1.840 2.756 0.504 0.726 

HP-T1LF-1.0 1.515 2.140 0.302 0.491  1.974 2.867 0.507 0.732 

HP-T1LF-1.5 1.485 2.066 0.294 0.492 2.042 3.128** 0.522 0.772** 

HP-T1LF-2.0 1.496 2.091 0.295 0.477 2.122* 3.166** 0.562*** 0.810*** 

HP-WL2R-3 1.585 2.327* 0.329** 0.527*** 2.108* 3.158** 0.551*** 0.783*** 

HP-WL2R-4 1.538 2.261 0.301 0.517* 2.121** 3.063* 0.527 0.757* 

HP-WL2R-5 1.515 2.140 0.302 0.491  1.974 2.867 0.507 0.732 

HP-WL2R-6 1.528 2.186 0.303 0.493 1.964 3.001* 0.513 0.747 

Note: *p < 0.05; **p < 0.01; ***p < 0.001 

 

 

 

Figure 4. Changes in Loss Function Values in Model Training 

 

 



Yu et al. / Wearable Sensor-Based Chronic Condition Severity Assessment 
 

 
MIS Quarterly Vol. 46 No. 3 / September 2022 1373 

 

Table 11. Minimum Validation Losses for Each Model 

Model 
Task 1: nM-EDL Task 2: M-EDL 

MAE RMSE MAE RMSE 

AADMML 
Validation loss 1.439 2.057 1.856 2.704 

# Iteration 1200 1320 1120 1120 

MTAEF 
Validation loss 1.504* 2.296** 2.001* 2.771 

# Iteration 2100 2140 2600 2600 

MTEF 
Validation loss 1.527* 2.359** 1.974* 2.909* 

# Iteration 2140 2460 3400 3400 

Note: *p < 0.05; **p < 0.01; ***p < 0.001 

 

We also show the minimum validation losses and the 

numbers of model training iterations where the minimum 

validation losses are achieved for each model in Table 11. 

Finally, we demonstrate how attention weights change with 

increasing training iterations in Appendix E. 

Case study 3 reports the statistics of overall attention weights 

as well as those grouped by age or gender. At an aggregate 

level, the attention weights demonstrate population patterns 

that could contribute to the development of new treatments 

or therapies. 

We chose MAE and RMSE as the representatives of loss 

functions due to space constraints. Model names with a “val” 

prefix represent the values of loss functions in the validation 

dataset, while names with a “train” prefix represent those in 

the training dataset. From Figure 4, we can observe that up 

to a certain number of iterations, both the training and 

validation losses are decreasing. However, after the 

validation losses achieve minima, they are increasing despite 

training losses still decreasing. In other words, the training 

losses are typically monotonically decreasing, while the 

validation losses are U-shaped. The increase of validation 

losses is a signal of model overfitting with excessive training 

iterations. A typical practice in deep learning training is to 

identify the number of iterations where the validation loss 

minimum is achieved and use it as an indicator that the 

model is adequately trained and converged. 

We observe that the validation losses (the thicker lines) of 

AADMML decrease much faster than those of MTAEF and 

MTEF. The validation losses of AADMML approach 

minima at between 1,200 and 1,320 iterations in Task 1 and 

about 1,120 iterations in Task 2. By contrast, those of 

MTAEF approach minima after 2,100 iterations in Task 1 

and 2,600 iterations in Task 2, and those of MTEF approach 

minima after 2,140 iterations in Task 1 and 3,400 iterations 

in Task 2. This shows a clear advantage in applying the 

adversarial attention competition, as it speeds up model 

training. In addition, the validation loss minima of 

AADMML are less than those of MTAEF, which means 

more precise predictions by AADMML. To summarize, the 

adversarial attention competition mechanism both reduces 

the number of training iterations and achieves less validation 

loss minima, collectively leading to improved model 

performance. 

Case Study 1: Examples of AADMML PD 
Severity Assessment 

We present two representative examples of wearable sensor-

based PD severity assessment in Figure 5, and illustrate how 

the attention weights can be used as indicators of specific 

activities that health professionals and patients should pay 

more attention to, which improves model interpretability. In 

both examples, we show the wearable sensor data charts for 

the five data sources (acc-walk, acc-stand, gyro-walk, gyro-

stand, and mic), task-specific attention weights learned by 

AADMML, PD severity assessment results (nM-EDL and 

M-EDL) by AADMML, and ground-truth nM-EDL and M-

EDL reported by the subjects. In the first example, the 

subject was a male aged 63 with mild PD symptoms (nM-

EDL = 6, M-EDL = 10). Based on the experimental trials, 

the AADMML accurately assessed the subject’s nM-EDL as 

6.5 and M-EDL as 9.8. In addition, the attention network 

allocated the highest attention to acc-walk (0.401 and 0.325), 

which can be a signal that the subject’s translational motion 

in walking contributes the most to the assessment result and 

should be further investigated. In contrast, the second subject 

was a male aged 34 with intermediate PD symptoms (nM-

EDL = 14, M-EDL = 8). The AADMML assessed the second 

subject’s nM-EDL as 12.9 and M-EDL as 7.5, and allocated 

more attention to the subject’s gyroscope sources (gyro-

walk: 0.342 and 0.308; gyro-stand: 0.197 and 0.202). This 

can be interpreted as the subject’s rotational motion patterns 

being more heavily correlated with the PD severity 

assessment results.  
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Figure 5. Examples of AADMML PD Severity Assessment 
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Given such results, the attention weights can help 

stakeholders interpret the model’s decision-making process 

and potentially guide effective therapies that can be designed 

for the subject’s specific activities (e.g., walking or 

standing). For example, larger attention weights on 

gyroscope signals may indicate that therapies should be 

designed for the patient’s joints, which account for rotational 

motion. 

Case Study 2: Economic Benefit Analysis 

Among the numerous uses of wearable sensor-based chronic 

condition severity assessment, one promising direction is 

identifying early-stage PD patients. In this section, we discuss 

the potential economic benefit of identifying early-stage PD 

patients. The purpose of this case study is to investigate the 

models’ ability to identify early-stage PD patients from a 

population of potential early-stage PD patients (subjects either 

without PD or with early-stage PD). To achieve this, we first 

reorganized the 10% hold-out subset of mPower to include 

only subjects with nM-EDL < 5  and M-EDL < 10 . The 

thresholds are a proportional rescale of the “mild PD” criteria 

in the literature (Martinez-Martin et al., 2015) as mPower only 

contains a subset of the MDS-UPDRS questionnaire. This 

generates a subset of 131 instances out of the total 248 

instances in the hold-out subset. Among the 131 instances, we 

further labeled those who have been professionally diagnosed 

as PD patients (indicated in the mPower demographics table) 

as “early-stage PD.” The remainder were labeled as “normal.” 

As such, the dataset was further grouped as 40 “early-stage 

PD” and 91 “normal” instances.  

After this reorganization, we ran the already trained models 

on the 131 instances to investigate how they generate nM-

EDL and M-EDL assessment scores, which will be further 

translated to “early-stage PD” or “normal.” The precision-

recall tradeoffs of the models were conducted by adjusting the 

minimum sum of nM-EDL and M-EDL required to be 

classified as “early-stage PD.”  

In addition to AADMML, we chose four best-performing 

benchmark models from Experiment 1 (RF, ETS, MTAEF, 

MTEF) for comparison. To fully investigate the model’s 

performance at different precision levels, we controlled for 

their precision rates at all possible levels from 0.4 to 1.02 and 

calculated their recall rates as the proportion at which the 

models can successfully identify early-stage PD patients. For 

instance, a recall rate of 80 % means the model can identify 

80 out of 100 early-stage PD patients. For a comprehensive 

 
2 Precisions less than 0.4 are not considered, as at such precision levels all 

models achieve identical recalls. 

comparison, we report the averaged recall rate over all 

possible precision rates for each model. The precision-recall 

curve (PR Curve) and the area under the curve (AUC) for the 

models can be found in Appendix D. 

For the purpose of this economic benefit analysis, we assume 

that 60,000 U.S. citizens become new early-stage PD patients 

every year (Heusinkveld et al., 2018) and assume that each 

correctly identified early-stage PD patient with proper 

management would result in net monetary benefits of $60,657 

(Johnson et al., 2013). Meanwhile, if a model misclassified a 

normal person as “early-stage PD” (i.e., a false alarm), we 

roughly assume a $500 false-alarm cost3 (Wilkins et al., 2012) 

due to unnecessary clinic visits and other redundant screenings. 

For each model, we calculated the averaged recall rate, number 

of identified early-stage PD patients, economic benefit from 

correctly identified early-stage PD patients, cost of false alarms, 

net economic benefit, and AADMML’s advantage in net 

economic benefit. Results are summarized in Table 12. 

By assessing PD severities based on walking and standing tests, 

AADMML could identify about 48,000 out of the 60,000 new 

early-stage PD patients every year, leading to an estimated net 

economic benefit exceeding $2.8 billion. Compared to the best-

performing benchmarks, AADMML can recognize at least 

2,000 more early-stage PD patients and generate at least an 

additional $146 million in extra benefits.  

In summary, this case study demonstrates the significance of 

PD severity assessment as well as the advantage of 

AADMML over competing benchmark models. 

Case Study 3: Attention Weights Statistics 

One of the major advantages of AADMML is that it not only 

assesses the severity of PD, but also reports attention weights 

that reflect the relative significance of different data sources. 

In this case study, we report the statistics of the attention 

weights estimated in the 10% hold-out subset of mPower. We 

report the overall results on assessing nM-EDL and M-EDL 

as well as the results further grouped by age or gender (Figure 

6). The age groups were chosen following a professional PD 

report (Lewin Group, 2019). The I-shaped marks indicate 

95% confidence intervals. 

We observe that accelerometers (acc-walk, acc-stand) are 

highly weighted in assessing both nM-EDL and M-EDL. Mic 

contributes more to assessing nM-EDL, while gyroscopes 

(gyro-walk, gyro-stand) contribute more to assessing M-EDL.  

3 https://www.eurekalert.org/pub_releases/2007-02/ra-lpd022207.php. 
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Table 12. Economic Benefit Analysis Results 

Model Recall 
# Identified 
early-stage PD 

Patients 

Economic benefit 
from PD patients 

Cost of false 
alarms 

Net economic 
benefit 

AADMML’s 
advantage in net 

economic benefit 

AADMML 0.8000 48,000 $2,911,536,000 $14,869,000 $2,896,667,000 N/A 

RF 0.7096 42,577  $2,582,593,089 $14,473,000 $2,568,120,089 $328,546,911  

ETS 0.7231 43,385  $2,631,603,945 $14,663,000 $2,616,940,945 $279,726,055  

MTAEF 0.7596 45,577  $2,764,564,089 $14,873,500 $2,749,690,589 $146,976,411  

MTEF 0.7365 44,192  $2,680,554,144 $14,858,500 $2,665,695,644 $230,971,356  

Note: # Identified early-stage PD patients = Recall × # New early-stage PD patients (60,000); Economic benefit from PD patients = # Identified 
early-stage PD patients × Cost of each case ($60,657); Cost of false alarms = (# Identified early-stage PD Patients / Precision – # Identified early-
stage PD patients) × Cost of each case ($500); Net economic benefit = Economic benefit from PD patients – Cost of false alarms. All values are 
averaged across precision levels from 0.4 to 1.0. 

 

 

Overall Attention Weights (Left: nM-EDL; Right: M-EDL) 

 

Attention Weights by Age Group (Left: nM-EDL; Right: M-EDL) 
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Attention Weights by Gender (Left: nM-EDL; Right: M-EDL) 

Figure 6. Aggregate Attention Weights Statistics 

Across different age groups, we notice that the attention 

weights on gyro-stand for those aged 75 or over are larger 

compared to other ages in assessing M-EDL, which may 

indicate that posture stability is a critical factor for older PD 

patients. Meanwhile, attention weights on acc-walk for those 

aged 49 or below are larger compared to other ages in 

assessing M-EDL, which may indicate that walking ability 

more closely relates to younger PD patients. Between males 

and females, accelerometers are more significant for males in 

assessing both tasks, while gyroscopes are more significant 

for females in general. We hope that the above findings show 

how attention weights can be interpreted and are helpful in 

future PD diagnosis and therapy development. 

Discussion and Conclusion 

Advanced information technologies such as mobile sensing 

devices are transforming healthcare for both providers and 

receivers (Chen et al., 2012). Consumer electronics, such as 

iPhone, Apple Watch, and Fitbit, and specialized mobile 

sensor-based caregiving platforms proposed by industry and 

academia, have opened up a new and promising 

multidisciplinary area of research: mobile health analytics. 

With the vast amount of personal wearable data being 

collected and stored, mobile health analytics has been 

receiving increased focus in the IS community. To a large 

extent, however, we lack specialized IT artifacts for mobile 

health analytics to better harness the abundant data for 

advanced business intelligence. 

Benefiting from the recent advances and success of deep 

learning, we designed a novel adversarial attention-based 

deep multisource multitask learning (AADMML) framework 

for more comprehensive chronic condition severity 

assessment. We proposed an innovative adversarial attention 

competition mechanism that contributes to the methodology 

of attention-based multisource multitask learning. We 

selected PD as our test case because of its significance and 

prevalence and collected a large-scale dataset, mPower, as our 

testbed. We conducted rigorous evaluations against state-of-

the-art feature-based and deep learning models to validate 

AADMML’s performance. In addition, we presented three 

case studies that further illustrate the utility and impact of our 

proposed AADMML. Next, we discuss the contributions to 

the IS knowledge base, practical implications, and future 

directions of this study. 

Contributions to the IS Knowledge Base 

IS scholars have suggested that novel IT artifacts should 

contribute prescriptive knowledge to the IS knowledge base 

(Nunamaker et al., 1990; Hevner et al., 2004). Our major 

contributions are four-fold: a situated implementation for 

chronic condition management, a novel mechanism for 

interpretable deep learning, model design guidelines for future 

IS researchers, and theoretical and design science 

contributions. We discuss each below. 

Chronic condition management: As indicated in MIS 

Quarterly’s recent special issue on the role of information 

systems and analysis in chronic disease prevention and 

management, chronic condition management is clearly a 
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significant domain of interest for IS scholars. Our proposed 

AADMML is a situated implementation for wearable sensor-

based chronic condition severity assessment, which is a 

critical step toward chronic condition management. By 

leveraging the novel adversarial attention competition 

mechanism, the AADMML outperformed traditional feature-

based machine learning models as well as other deep learning 

models, and therefore significantly enhanced wearable sensor-

based chronic condition severity assessment. Although we 

selected PD as a test case, the AADMML can be easily applied 

to many other chronic conditions (e.g., dementia or frailty) by 

choosing the proper data sources and assessment tasks that 

best reflect the respective chronic condition. 

Interpretable deep learning: Compared to traditional 

feature-based machine learning models, deep learning has 

been a game-changer in terms of its predictive power (e.g., 

prediction accuracy) and transferability (e.g., a trained deep 

learning model can be applied for related problems with 

minimal hyperparameter tuning), especially for many 

complex sensory tasks. The improved predictive power is 

even more important for health-related applications. 

However, deep learning models (and many complex feature-

based models, such as ensemble models) face interpretability 

issues: it is very difficult for the model to provide a clear 

rationale for its predictions, or for humans to inspect what 

independent variables cause the results. This issue prevents 

deep learning models from being widely used in many health 

or medical applications, as such models are relatively weak in 

informing health professionals which possible factors could 

potentially lead to a predicted result. The introduction of the 

attention mechanism is a significant step toward interpretable 

deep learning, which helps us understand which part of the 

input data is more relevant to the model output. As an 

improvement over current attention-based deep multisource 

learning models, our proposed adversarial attention 

competition mechanism is not constrained in the AADMML. 

Instead, it is a generalizable mechanism that is applicable to 

other topics that involve multiple data sources and can apply 

deep learning models. We believe this core methodological 

contribution pushes the state of the art of interpretable deep 

learning and multisource learning. 

Model design guidelines: Deep learning models, including 

our proposed AADMML, offer a wide range of options in 

their structures and hyperparameters. In this study, we showed 

a good example of building a deep learning model with CNN 

and LSTM, where CNN is designed to learn the local features 

of grid-like data while LSTM is designed to model the long 

temporal sequences. In addition, we conducted extensive 

sensitivity analyses to investigate how the changes in 

hyperparameters (size of CNN kernels, number of CNN 

layers, size of LSTM hidden neurons, structure of LSTM, 

learning rate, dropout rate, adversarial learning factor, relative 

weight of Task 1 loss function, and weight of parameter L2-

regularization) would impact the model performance. We 

hope this practice can facilitate model selection and building 

in related problem domains for future IS research. 

Theoretical and design science contributions: Understanding 

intertwined interdependencies among different contributing 

factors and leveraging different types of data sources is an 

issue in many business problems. Meanwhile, interpretability 

is key to AI-enabled business decision-making as predictive 

outcomes without traceable reasons are not as informative for 

human decision makers. The core contribution of this work is 

in creating an interpretable IT artifact that can deal with novel 

challenges in the types of inputs as well as in modes of learning 

tasks. Unlike traditional machine learning models that learn 

only one task at a time, AADMML can simultaneously learn 

from seemingly distinct task components for more 

comprehensive decision-making. Numerous business 

problems that employ deep learning-enabled speech 

recognition and natural language processing, such as customer 

relationship management and the insurance industry, can 

benefit largely by applying AADMML to process consumer 

data that are inherently high-volume and high-variety. 

Practical Implications 

Since Former President Obama launched the Precision 

Medicine Initiative in 2015, healthcare research and practice 

have become increasingly more precise, prompt, and 

personalized. With the development of sensing technologies, 

researchers and practitioners are able to collect, store, and 

analyze various types of sensor data from senior citizens to 

assess their chronic condition severities and provide proper 

medical interventions. Senior citizens, their families, and 

health professionals can all benefit from AADMML, a 

generalizable and interpretable framework for mobile health 

analytics. We discuss major practical implications for those 

stakeholders below. 

Senior citizens: Senior citizens face difficulties in their 

independent living, partly due to the lack of a convenient and 

reliable approach to better understand their chronic condition 

severities. In addition, they are now placed at serious risk of 

contracting COVID-19 due to the necessity of in-person visits 

to clinics. Assistive tools such as instantiations of the 

AADMML framework can empower senior citizens by 

enabling them to conduct mobility tests at home, which can 

complement a phone or video telemedicine visit, improving 

the quality of the interaction and making it comparable to a 

traditional evaluation with physical examinations by a 

healthcare provider. In addition, even without a clinical visit, 

senior citizens can obtain precise assessments of the 

progression of existing chronic conditions or the risks of 
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potential chronic conditions, improving their confidence in 

living independently. 

Families: Traditionally, home-dwelling senior citizens 

require one or more caregivers to ensure that their health 

conditions are properly monitored and unforeseen accidents 

are resolved in a timely manner (e.g., falling down, acute onset 

of symptoms, etc.). With a remote wearable sensor system 

equipped with analytical engines such as the AADMML 

framework, senior citizens’ families can attain real-time 

reports of their loved ones’ daily routines and chronic 

condition severity assessment results without disrupting them, 

leading to greater peace of mind. 

Health professionals: The AADMML framework is a 

flexible tool for advanced clinical decision support at the point 

of care for health professionals. It can be integrated into health 

professionals’ clinical routines by conducting mobility tests 

(e.g., walking and standing tests) to support their diagnoses. 

Even for highly specialized movement disorder specialists 

that perform walking and postural tests and utilize the MDS-

UPDRS for routine management and clinical trials, the 

application of the AADMML framework may divulge 

nonintuitive information that can assist in prognosticating falls 

and hospitalizations. For instance, the attention weights of the 

five sources (acc-walk, acc-stand, gyro-walk, gyro-stand, and 

mic) correspond to the relative significance of five aspects of 

the patient (translational motion in walking, translational 

motion in standing, rotational motion in walking, rotational 

motion in standing, and speech), respectively, and thus can 

provide guidance in designing physical therapies, applying 

assistive devices such as walkers or wheelchairs, adjusting 

medication, among other interventions. 

Limitations and Future Research 

As with other academic studies in emerging applications, 

there are limitations in this research. First, we tested our 

AADMML framework only in the context of PD. Future 

researchers could instantiate the AADMML framework based 

on their applications and contexts (e.g., dementia, diabetes, 

etc.) and explore the boundaries of such a framework. Second, 

the current instantiation of the AADMML framework can 

only utilize wearable sensor data as its data source. With the 

extreme diversity of available health data, an extended model 

may be preferred if other types of data are more crucial in 

assessing certain types of chronic conditions (e.g., blood 

glucose level for diabetes). Third, our current attention 

mechanism only points out which data source is more relevant 

to the assessment result. A model that could pinpoint the exact 

timestamp in wearable sensor data that leads to the result 

would likely be highly significant, as it would allow for more 

fine-grained inspection by stakeholders. Fourth, although we 

empirically demonstrated that adversarial attention 

competitions speed up model training and improve model 

performance, we have not found a theoretical confirmation. 

We believe that the above directions of research will be of 

great interest to researchers and practitioners seeking to 

further enhance senior citizens’ quality of life.  
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Appendix A  

AADMML Model Specifications 

We recognize that model reproducibility is of great significance for a scholarly publication. Therefore, we provide the specifications of the 

full AADMML model (e.g., selection of layers and hyperparameters). The specifications in Table A1 are applicable for all data sources and 

assessment tasks. 

Table A1. AADMML Model Specifications 

Category Layer type Description 

Stage 1 
(CNN) 

Conv2d Number of kernels: 16; kernel size: 3; stride 1; padding: “same” 

Max pooling Window size: 2; stride 1; padding: "same" 

Conv2d Number of kernels: 16; kernel size: 3; stride 1; padding: "same" 

Max pooling Window size: 2; stride 1; padding: "same" 

Flatten Flatten to a vector 

Dense Neurons: 16 

Stage 1 
(LSTM) 

BiLSTM Num units: 16; return_sequences=True 

BiLSTM Num units: 16; return_sequences=False 

Dense Neurons: 32 

Stage 2 

Multiply Matrix multiplication; Size: 32 

Tanh Tanh activation function 

Exponential Normalize attention weights with a sum of 1 

Multiply Multiplication of a vector and a scalar 

Stage 3 

Add Integrate attention-weighted source-specific features 

Dense Neurons: 32 

Dropout Rate: 0.5 

Dense Neurons: 1 
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Appendix B  

Feature Sets for Feature-Based Machine Learning Models 

In Tables B1 and B2, we list the features derived from wearable sensor data that are used by feature-based nonensemble and ensemble 

machine learning models. These features are among the most widely used features in past literature on wearable sensor-based PD severity 

assessment (Hubble et al., 2015). Recall that a data sample 𝒙 from an accelerometer or gyroscope takes the form: 

𝒙 = [𝒂1 𝒂2 ⋯ 𝒂𝑙], 𝒂𝑖 = [𝑎x,𝑖 𝑎y,𝑖 𝑎z,𝑖]T, 𝑖 ∈ {1, … , 𝑙}, 

where 𝑙 is the total number of data points 𝒂𝑖 in 𝒙 and superscript T denotes matrix transpose.  

Table B1. Names and Formulas of Features Derived for Feature-Based Machine Learning Models from 
Accelerometers and Gyroscopes 

Feature name Formula 

Mean x-axis values 
𝑢x =

1

𝑙
∑ 𝑎x,𝑖

𝑙

𝑖=1
 

Mean y-axis values 
𝑢y =

1

𝑙
∑ 𝑎y,𝑖

𝑙

𝑖=1
 

Mean z-axis values 
𝑢z =

1

𝑙
∑ 𝑎z,𝑖

𝑙

𝑖=1
 

Standard deviation of x-axis values 

𝜎x = √
1

𝑙 − 1
∑ (𝑎x,𝑖 − 𝑢x)

2𝑙

𝑖=1
 

Standard deviation of y-axis values 

𝜎y = √
1

𝑙 − 1
∑ (𝑎y,𝑖 − 𝑢y)

2𝑙

𝑖=1
 

Standard deviation of z-axis values 

𝜎z = √
1

𝑙 − 1
∑ (𝑎z,𝑖 − 𝑢z)

2𝑙

𝑖=1
 

Mean magnitude 

𝑢|𝒂| =
1

𝑙
∑(|𝒂|𝑖)

𝑙

𝑖=1

, where |𝒂|𝑖 = √𝑎x,𝑖
2 + 𝑎y,𝑖

2 + 𝑎z,𝑖
2  

Standard deviation of magnitude 

𝜎|𝒂| = √
1

𝑙 − 1
∑ (|𝒂|𝑖 − 𝑢|𝒂|)

2𝑙

𝑖=1
 

Mean x-axis jerk 
𝛼x =

1

𝑙 − 1
∑ 𝑝x,𝑖

𝑙−1

𝑖=1
, where 𝑝x,𝑖 = 𝑎x,𝑖+1 − 𝑎x,𝑖 

Mean y-axis jerk 
𝛼y =

1

𝑙 − 1
∑ 𝑝y,𝑖

𝑙−1

𝑖=1
, where 𝑝y,𝑖 = 𝑎y,𝑖+1 − 𝑎y,𝑖 

Mean y-axis jerk 
𝛼z =

1

𝑙 − 1
∑ 𝑝z,𝑖

𝑙−1

𝑖=1
, where 𝑝z,𝑖 = 𝑎z,𝑖+1 − 𝑎z,𝑖 

Standard deviation of x-axis jerk 

𝛽x = √
1

𝑙 − 2
∑ (𝑝x,𝑖 − 𝛼x)

2𝑙−1

𝑖=1
 

Standard deviation of y-axis jerk 

𝛽y = √
1

𝑙 − 2
∑ (𝑝y,𝑖 − 𝛼y)

2𝑙−1

𝑖=1
 

Standard deviation of z-axis jerk 

𝛽z = √
1

𝑙 − 2
∑ (𝑝z,𝑖 − 𝛼z)

2𝑙−1

𝑖=1
 

Mean jerk magnitude 

𝛼|𝒑| =
1

𝑙 − 1
∑(|𝒑|𝑖)

𝑙−1

𝑖=1

, where |𝒑|𝑖 = √𝑝x,𝑖
2 + 𝑝y,𝑖

2 + 𝑝z,𝑖
2  
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Standard deviation of jerk magnitude 

𝛽|𝒂| = √
1

𝑙 − 2
∑ (|𝒑|𝑖 − 𝛼|𝒑|)

2𝑙−1

𝑖=1
 

Stride time variability on x-axis (1) Identify signal peaks in x-axis, [𝑡1, 𝑡2, … , 𝑡𝑄]; 

(2) Identify stride times [𝑣1, 𝑣2 … , 𝑣𝑄−1], where 𝑣𝑖 = 𝑡𝑖+1 − 𝑡𝑖; 

(3) Compute stride time variability 𝑉x = √
1

𝑄−2
∑ (𝑣𝑖 − 𝑣̅)2𝑄−1

𝑖=1  

Stride time variability on y-axis (1) Identify signal peaks in y-axis, [𝑡1, 𝑡2, … , 𝑡𝑄]; 

(2) Identify stride times [𝑣1, 𝑣2 … , 𝑣𝑄−1], where 𝑣𝑖 = 𝑡𝑖+1 − 𝑡𝑖; 

(3) Compute stride time variability 𝑉y = √
1

𝑄−2
∑ (𝑣𝑖 − 𝑣̅)2𝑄−1

𝑖=1  

Stride time variability on z-axis (1) Identify signal peaks in z-axis, [𝑡1, 𝑡2, … , 𝑡𝑄]; 

(2) Identify stride times [𝑣1, 𝑣2 … , 𝑣𝑄−1], where 𝑣𝑖 = 𝑡𝑖+1 − 𝑡𝑖; 

(3) Compute stride time variability 𝑉z = √
1

𝑄−2
∑ (𝑣𝑖 − 𝑣̅)2𝑄−1

𝑖=1  

Stride time variability on magnitude (1) Identify signal peaks in magnitude, [𝑡1, 𝑡2, … , 𝑡𝑄]; 

(2) Identify stride times [𝑣1, 𝑣2 … , 𝑣𝑄−1], where 𝑣𝑖 = 𝑡𝑖+1 − 𝑡𝑖; 

(3) Compute stride time variability 𝑉|𝒂| = √
1

𝑄−2
∑ (𝑣𝑖 − 𝑣̅)2𝑄−1

𝑖=1  

For the mic source, recall that each spectrogram is a matrix of 𝐹 × 𝑙. We further denote 𝑎𝑓,𝑖 as the matrix entry at row 𝑓 and column 𝑖. 

Consistent with a prior audio processing study (Kalantarian et al., 2014), we extracted the following features for non-deep learning models: 

Table B2. Names and Formulas of Features Derived for Feature-based Machine Learning Models from 
Spectrograms 

Feature name Formula 

Mean amplitude across all 
frequencies 𝑢 =

∑ ∑ 𝑎𝑓,𝑖
𝑙
𝑖=1

𝐹
𝑓=1

𝐹 ∙ 𝑙
 

Mean amplitude for frequency 𝑓 (𝑓 =
1, … , 𝐹) 𝑢𝑓 =

∑ 𝑎𝑓,𝑖
𝑙
𝑖=1

𝑙
, ∀ 𝑓 = 1, … , 𝐹 
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Appendix C 

Computational Efficiency Experiment 

In this section, we empirically test the average amount of time that AADMML and benchmark models (feature-based and deep learning) 

need to process wearable sensor data and assess PD severity for an instance. The experiment is conducted on a workstation with CPU as 

“Intel Xeon CPU E5-2640 v4 @ 2.4GHz” and GPU as “Nvidia GeForce GTX 1080 Ti.” Table C1 summarizes the results. 

Table C1. Average Execution Time Comparison in Milliseconds (ms) 

Category Model Execution time (ms) Category Model Execution time (ms) 

Feature-
based, 
nonensemble  

DT 127.6 

Deep 
learning 

STLF 193.3  

KNN 127.7 STEF 240.5  

SVM 127.6 STAEF 198.2  

Feature-
based, 
ensemble 

ETS 127.6 MTLF 141.8  

RF 127.6 MTEF 164.1  

ADA 127.6 MTAEF 144.8  

GBM 127.6 AADMML 144.9  

XGB 127.6   

NEV 127.8   

 

We notice that all feature-based models spent similar execution times (about 127.6 ms). This is because the major computational cost comes 

from extracting features (as shown in Appendix B) from wearable sensor and audio data, which accounts for more than 127 ms. Overall, deep 

multitask models cost significantly less execution time compared to their single-task counterparts (e.g., MTLF (141.8 ms) compared to STLF 

(193.3 ms)), which is additional evidence of the advantages of deep multitask learning. The computational efficiency of AADMML (144.9 

ms) is on a par with feature-based models and is among the best in deep learning models. 

https://www.amazon.com/Nvidia-GEFORCE-GTX-1080-Ti/dp/B06XH5ZCLP
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Appendix D 

Precision-Recall Curves in Case Study 2 

In this section, we report the precision-recall curves (PR Curves) in Figure D1 and the areas under the curves (AUC) in Table D1 for 

AADMML and select benchmark models in Case Study 2. The AADMML outperforms benchmark models in AUC, which indicates its 

superiority in identifying early-stage PD patients using wearable sensors. 

 

Figure D1. PR Curves in Case Study 2 

 

Table D1. AUC in Case Study 2 

 AADMML RF ETS MTAEF MTEF 

AUC 0.881 0.831 0.829 0.859 0.845 
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Appendix E  

Changes in Attention Weights in Model Training 

In this section, we report how AADMML and MTAEF task-specific attention weights change with increasing numbers of training iterations 

(Task 1: nM-EDL; Task 2: M-EDL). The top two charts are the results are from AADMML while the bottom two are from MTAEF. We can 

observe that attention weights in AADMML for both tasks converge with increasing training iterations, which is similar to those of MTAEF. 

 

Results from AADMML 

 

Results from MTAEF 

Figure E1. Changes of Task-Specific Attention Weights in Model Training 
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Appendix F 

Sensitivity Analysis for Select Benchmark Models 

In this section, we report the sensitivity analysis that reflects the hyperparameter tuning processes for our benchmark models. For feature-

based models, we report the sensitivity analysis results in Table F1. The hyperparameters listed are the most influential ones in the Python 

package scikit-learn. For deep learning models, we only report the results for MTEF and MTAEF (the two models that resemble AADMML 

the most) in Tables F2 and F3 because of space constraints. The other deep learning benchmark models in Experiment 1 have been tuned 

with the same search space of hyperparameters. All significance levels are calculated against our AADMML with the best hyperparameters. 

Hyperparameters and results in boldface are those we finally chose for benchmark models to report in Table 10. 

Table F1. Sensitivity Analysis Results for Feature-Based Models 

Model and 
hyperparameter 

Option 
Task 1: nM-EDL Task 2: M-EDL 

MAE RMSE LMAE LRMSE MAE RMSE LMAE LRMSE 

DT 

criterion 

mse 2.275*** 3.392*** 0.345** 0.513* 3.418*** 4.992*** 0.728*** 0.905*** 

friedman
_mse 

2.356*** 3.195*** 0.335*** 0.523** 3.460*** 5.060*** 0.720*** 0.893*** 

mae 2.067*** 3.367*** 0.309 0.506 2.662*** 4.953*** 0.501 0.743 

KNN 

n_neighbors 

1 2.235*** 3.947*** 0.348*** 0.538*** 2.908*** 4.848*** 0.488 0.736 

3 2.478*** 3.451*** 0.346*** 0.505 3.273*** 4.806*** 0.691*** 0.859*** 

5 2.672*** 3.658*** 0.352*** 0.527** 3.621*** 4.987*** 0.748*** 0.903*** 

SVM 

kernel 

linear 3.208*** 4.376*** 0.397*** 0.506 4.471*** 6.858*** 1.536*** 1.365*** 

rbf 2.856*** 3.855*** 0.358*** 0.530** 3.794*** 5.549*** 0.765*** 0.907*** 

sigmoid 2.913*** 3.672*** 0.375*** 0.521** 3.888*** 5.455*** 0.755*** 0.908*** 

ETS 

n_estimators 

50 1.600 2.372** 0.316* 0.512* 2.107* 3.075** 0.713*** 0.895*** 

100 1.738** 2.303 0.328** 0.515* 2.126* 3.065* 0.713*** 0.891*** 

200 1.708* 2.304 0.321* 0.527*** 2.184** 3.276*** 0.725*** 0.897*** 

300 1.678* 2.392** 0.322 0.516* 2.087 3.082* 0.714*** 0.901*** 

RF 

n_estimators 

50 1.538 2.328* 0.325** 0.512* 2.144** 3.096* 0.721*** 0.900*** 

100 1.599 2.250 0.329** 0.514** 2.266*** 3.247*** 0.733*** 0.911*** 

200 1.654 2.245 0.324** 0.513* 2.175** 3.116** 0.728*** 0.903*** 

300 1.565 2.217 0.312 0.509* 2.164* 3.193*** 0.722*** 0.893*** 

ADA 

n_estimators 

50 2.835*** 3.565*** 0.380*** 0.517* 4.143*** 4.583*** 0.760*** 0.923*** 

100 2.935*** 3.364*** 0.369*** 0.538*** 4.326*** 4.671*** 0.782*** 0.934*** 

200 2.751*** 3.394*** 0.352*** 0.540*** 4.243*** 4.768*** 0.768*** 0.931*** 

300 2.810*** 3.369*** 0.391*** 0.531*** 4.259*** 4.706*** 0.759*** 0.939*** 

GBM 

n_estimators 

50 2.023*** 2.728*** 0.347*** 0.522** 2.854*** 4.120*** 0.574*** 0.799*** 

100 1.786** 2.688*** 0.324* 0.499 2.624*** 4.093*** 0.519 0.740 

200 1.680 2.430** 0.364*** 0.559*** 2.294*** 3.844*** 0.540* 0.763** 

300 1.589 2.603*** 0.383*** 0.547*** 2.224*** 3.732*** 0.528 0.741 

XGB 

n_estimators 

50 2.017*** 3.038*** 0.415*** 0.594*** 2.848*** 3.759*** 0.652*** 0.825*** 

100 1.790*** 2.753*** 0.416*** 0.580*** 2.508*** 3.365*** 0.597*** 0.799*** 

200 1.554 2.616*** 0.412*** 0.581*** 2.129* 3.148** 0.538* 0.761* 

300 1.533 2.539*** 0.388*** 0.578*** 2.170** 3.062* 0.523 0.744 

Note: *p < 0.05; **p < 0.01; ***p < 0.001 
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Table F2. Sensitivity Analysis Results for MTEF 

Model 
Task 1: nM-EDL Task 2: M-EDL 

MAE RMSE LMAE LRMSE MAE RMSE LMAE LRMSE 

HP-CNN (8) 1.868*** 2.570*** 0.321 0.520** 1.959 2.994 0.525 0.755 

HP-CNN (16)  1.559 2.457*** 0.322** 0.516** 2.128* 2.903 0.515 0.747 

HP-CNN (32) 1.570 2.410** 0.311 0.513* 1.998 2.932 0.516 0.742 

HP-CNN (64) 1.622 2.416*** 0.322* 0.514** 2.115 3.001 0.532 0.753 

HP-CNN-L1 1.617 2.556*** 0.309 0.542*** 2.033 2.997 0.504 0.744 

HP-CNN-L2 1.570 2.410** 0.311 0.513* 1.998 2.932 0.516 0.742 

HP-CNN-L3 1.561 2.412*** 0.333*** 0.511** 2.074 2.804 0.517 0.748 

HP-CNN-L4 1.616 2.543*** 0.335*** 0.514* 2.207**  2.989 0.523 0.762* 

HP-LSTM (8) 1.516 2.601*** 0.336*** 0.538*** 2.088 3.060* 0.532 0.771** 

HP-LSTM (16)  1.531 2.454*** 0.345*** 0.528*** 2.067 2.837 0.520 0.754 

HP-LSTM (32) 1.570 2.410** 0.311 0.513* 1.998 2.932 0.516 0.742 

HP-LSTM (64) 1.573 2.462** 0.342** 0.522** 2.310*** 3.112* 0.532* 0.764** 

HP-LSTM-L1 1.761** 2.904*** 0.322 0.537*** 2.269*** 3.025 0.541** 0.781*** 

HP-LSTM-L2 1.627 2.665*** 0.334** 0.547*** 2.134* 3.143*** 0.5274 0.777*** 

HP-BLSTM-L1 1.637 2.546*** 0.327* 0.516** 1.963 3.016* 0.509 0.726 

HP-BLSTM-L2 1.570 2.410** 0.311 0.513* 1.998 2.932 0.516 0.742 

HP-LR-1 1.972*** 2.546*** 0.355*** 0.552*** 2.285** 3.137** 0.663*** 0.889*** 

HP-LR-2 1.570 2.410** 0.311 0.513* 1.998 2.932 0.516 0.742 

HP-LR-3 1.555 2.421** 0.320* 0.513** 2.096 2.927 0.504 0.743 

HP-LR-4 1.565 2.428*** 0.332*** 0.532*** 2.154** 3.045* 0.533* 0.769** 

HP-DR-0 1.633 2.677*** 0.344*** 0.532*** 2.183** 3.161*** 0.532 0.770** 

HP-DR-25 1.594 2.542*** 0.335*** 0.539*** 2.078 3.128** 0.529 0.731 

HP-DR-50 1.570 2.410** 0.311 0.513* 1.998 2.932 0.516 0.742 

HP-DR-75 1.612 2.497*** 0.317* 0.519** 1.997 2.980 0.525 0.747 

HP-T1LF-0.5 1.753*** 2.596*** 0.322* 0.540*** 1.954 2.908 0.505 0.743 

HP-T1LF-1.0 1.570 2.410** 0.311 0.513* 1.998 2.932 0.516 0.742 

HP-T1LF-1.5 1.501 2.212 0.306 0.516** 2.165*** 3.058 0.529 0.791*** 

HP-T1LF-2.0 1.526 2.215 0.310 0.505 2.305*** 3.437*** 0.562*** 0.821*** 

HP-WL2R-3 1.661* 2.640*** 0.360*** 0.564*** 2.310** 3.327*** 0.562*** 0.805*** 

HP-WL2R-4 1.566 2.606*** 0.317 0.540*** 2.324*** 3.175*** 0.527 0.771** 

HP-WL2R-5 1.574 2.416*** 0.325** 0.509 2.172** 2.991 0.520 0.750 

HP-WL2R-6 1.570 2.410** 0.311 0.513* 1.998 2.932 0.516 0.742 

Note: *p < 0.05; **p < 0.01; ***p < 0.001 
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Table F3. Sensitivity Analysis Results for MTAEF 

Model 
Task 1: nM-EDL Task 2: M-EDL 

MAE RMSE LMAE LRMSE MAE RMSE LMAE LRMSE 

HP-CNN (8) 1.753** 2.524*** 0.328** 0.516* 2.075 2.905 0.514 0.753 

HP-CNN (16)  1.538 2.382* 0.323* 0.506 2.038 2.806 0.521 0.741 

HP-CNN (32) 1.523 2.370* 0.318 0.515* 2.074* 2.859 0.518 0.735 

HP-CNN (64) 1.664* 2.330* 0.304 0.526*** 2.028 2.896 0.529 0.743 

HP-CNN-L1 1.604 2.422** 0.320 0.525*** 2.071 3.028* 0.513 0.749 

HP-CNN-L2 1.523 2.370* 0.318 0.515* 2.074* 2.859 0.518 0.735 

HP-CNN-L3 1.591 2.318* 0.320 0.513* 1.986 2.898 0.519 0.748 

HP-CNN-L4 1.529 2.512*** 0.330*** 0.512** 2.289** 2.874 0.532 0.749 

HP-LSTM (8) 1.526 2.468*** 0.320* 0.537*** 2.103 2.978 0.537* 0.755* 

HP-LSTM (16)  1.577 2.398* 0.315 0.512* 2.076 2.905 0.513 0.742 

HP-LSTM (32) 1.523 2.370* 0.318 0.515* 2.074* 2.859 0.518 0.735 

HP-LSTM (64) 1.492 2.434** 0.342*** 0.525*** 2.198** 3.003 0.531 0.749 

HP-LSTM-L1 1.721* 2.754*** 0.334** 0.521*** 2.328*** 2.956 0.535* 0.779** 

HP-LSTM-L2 1.609 2.570*** 0.324* 0.533*** 2.080 2.979 0.523 0.760* 

HP-BLSTM-L1 1.598 2.447*** 0.310 0.525*** 2.081 2.823 0.528 0.717 

HP-BLSTM-L2 1.523 2.370* 0.318 0.515* 2.074* 2.859 0.518 0.735 

HP-LR-1 1.574 2.437** 0.325* 0.517** 2.141** 2.969 0.517 0.751 

HP-LR-2 1.523 2.370* 0.318 0.515* 2.074* 2.859 0.518 0.735 

HP-LR-3 1.529 2.408*** 0.322** 0.524*** 2.095* 2.888 0.527 0.751 

HP-LR-4 1.558 2.393** 0.330*** 0.537*** 2.078* 2.954 0.531 0.762** 

HP-DR-0 1.655* 2.593*** 0.342*** 0.538*** 2.183** 3.102** 0.537* 0.764** 

HP-DR-25 1.548 2.452*** 0.321 0.534*** 2.232*** 3.044* 0.537* 0.736 

HP-DR-50 1.506 2.309 0.321* 0.524** 2.110* 2.881 0.516 0.719 

HP-DR-75 1.523 2.370* 0.318 0.515* 2.074* 2.859 0.518 0.735 

HP-T1LF-0.5 1.714** 2.465** 0.339*** 0.544*** 1.954 2.655** 0.511 0.738 

HP-T1LF-1.0 1.523 2.370* 0.318 0.515* 2.074* 2.859 0.518 0.735 

HP-T1LF-1.5 1.511 2.221 0.310 0.507 2.139* 3.039* 0.534 0.776*** 

HP-T1LF-2.0 1.507 2.205 0.310 0.504 2.184*** 3.155** 0.567*** 0.804*** 

HP-WL2R-3 1.626 2.615*** 0.337*** 0.558*** 2.217*** 3.182*** 0.555** 0.794*** 

HP-WL2R-4 1.572 2.406** 0.314 0.533*** 2.173** 3.124** 0.537* 0.759* 

HP-WL2R-5 1.523 2.370* 0.318 0.515* 2.074* 2.859 0.518 0.735 

HP-WL2R-6 1.581 2.351* 0.322* 0.518** 1.987 2.966 0.528 0.745 

Note: *p < 0.05; **p < 0.01; ***p < 0.001 
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Appendix G  

Comparison between Feature-Based Learning and Deep Learning 

The key difference of deep learning compared to feature-based machine learning models is that deep learning models can automatically learn 

salient feature representations from complex data, especially raw sensory data (LeCun et al., 2015). Table G1 summarizes a comparison 

among feature-based non-ensemble machine learning, feature-based ensemble learning, and deep learning, in the dimensions of predictive 

power, transferability, needed dataset size, and computational cost. 

Table G1. Comparison between Feature-Based Learning and Deep Learning 

 
Feature-based  

nonensemble machine 
learning 

Feature-based ensemble 
learning 

Deep learning 

Predictive power Medium Medium-strong Strong 

Transferability Low Low Medium 

Needed dataset size Small Medium Large 

Computational cost Low Medium High 

The major advantage of deep learning over feature-based nonensemble machine learning and feature-based ensemble learning is its predictive 

power in many classification tasks (e.g., image recognition, speech recognition). For instance, the image recognition error rate dropped from 

26% to 3.5% (Krizhevsky et al., 2012) with the introduction of convolutional neural networks (CNNs) (LeCun et al., 2015). Because no 

feature engineering is needed, deep learning models often show good transferability for tasks that share identical data characteristics (e.g., 

image data or wearable sensor data) (Long et al., 2018), whereas feature-based machine learning requires the redesign of feature sets. 

Although deep learning is often criticized due to its need for a large amount of data, the exponential amount of data being generated in the 

big data era (especially sensor data) has largely mitigated that drawback. Regarding deep learning’s high computational cost, new hardware 

and algorithms are constantly being designed to alleviate this concern. 
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Appendix H 

Model Performance with Different Demographic Groups 

In this section, we detail how the model performs with different demographic groups, including age and gender. Following Case Study 3, we 

grouped the subjects into four age groups: 18 to 49, 50 to 64, 65 to 74, and 75 to 84, as well as two gender groups: male and female. Results 

can be found in Table H1, where the best results within a demographic category are in boldface.  

Table H1. Model Performance with Different Demographic Groups 

Demographic groups 
Task 1: nM-EDL Task 2: M-EDL 

MAE RMSE MAE RMSE 

Age 

18 – 49 1.450 2.134 1.842 2.747 

50 – 64 1.641 2.234 2.027 2.902 

65 – 74 1.504 2.129 2.084 2.987 

75 – 84 1.226 1.608 2.004 2.864 

Gender 
Male 1.525 2.150 1.886 2.777 

Female 1.493 2.119 2.166 3.065 

 

We can see that in different age groups, AADMML performs best in predicting nM-EDL scores for those who are 75 to 84 years old and 

predicting M-EDL scores for those who are 18 to 49 years old. When measuring nM-EDL for those who are 50 to 64 years old or measuring 

M-EDL for those who are 65 to 74 years old, the manual MDS-UPDRS questionnaires might be preferred as AADMML is performing 

slightly worse compared to other age groups. Between male and female, AADMML performs better in predicting nM-EDL scores for female 

and predicting M-EDL scores for male. We believe these results can help practitioners utilize AADMML as an aiding tool in PD diagnoses. 

 


