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 Ensuring the health and safety of senior citizens who live alone is a growing societal concern. The Activity 

of Daily Living (ADL) approach is a common means to monitor disease progression and the ability of these 

individuals to care for themselves. However, the prevailing sensor-based ADL monitoring systems primarily 

rely on wearable motion sensors, capture insufficient information for accurate ADL recognition, and do not 

provide a comprehensive understanding of ADLs at different granularities. Current healthcare IS and mobile 

analytics research focuses on studying the system, device, and provided services, and is in need of an end-

to-end solution to comprehensively recognize ADLs based on mobile sensor data. This study adopts the 

design science paradigm and employs advanced deep learning algorithms to develop a novel hierarchical, 

multiphase ADL recognition framework to model ADLs at different granularities. We propose a novel 2D 

interaction kernel for convolutional neural networks to leverage interactions between human and object 

motion sensors. We rigorously evaluate each proposed module and the entire framework against state-of-

the-art benchmarks (e.g., support vector machines, DeepConvLSTM, hidden Markov models, and topic-

modeling-based ADLR) on two real-life motion sensor datasets that consist of ADLs at varying granularities: 

Opportunity and INTER. Results and a case study demonstrate that our framework can recognize ADLs at 

different levels more accurately. We discuss how stakeholders can further benefit from our proposed 

framework. Beyond demonstrating practical utility, we discuss contributions to the IS knowledge base for 

future design science-based cybersecurity, healthcare, and mobile analytics applications. 

Keywords: Activity of Daily Living recognition, deep learning, human-object interaction, 2D 

interaction kernel, convolutional neural networks, sequence-to-sequence model, design science 
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Introduction 

Medical advances and increased healthcare accessibility 

have enabled an increasing life expectancy (World Health 

Organization 2016). In 2016, 49.2 million U.S. citizens 

(15.2%) were over 65 years old (i.e., senior citizens) 

(Census Bureau 2017). The American Community Survey 

estimates indicate that 79.2% of U.S. senior citizens live 

independently (Census Bureau 2016). Chronic conditions, 

frailty, dementia, and other health concerns or diseases can 

impact the health, safety, and quality of life of senior 

citizens who live alone. Ensuring health and safety for 

these senior citizens is a growing societal concern.  

Researchers and practitioners often use the Activity of 

Daily Living (ADL) approach to monitor the self-care 

ability, health status, and disease progression (Foti and 

Koketsu 2013) of senior citizens who live alone. Basic 

ADLs engage simple physical movements (e.g., self-

feeding and toilet hygiene) (Katz 1983). Instrumental 

ADLs involve more cognitively complex tasks, such as 

preparing meals, taking prescribed medications, and 

shopping (Hardy 2014). Conventional approaches to 

monitoring ADL performance include clinical exams 

(Katz 1983; Singh et al. 2014), home care services 

(Whitehead et al. 2015), and self-reported activities at 

home (Chung et al. 2017). Clinical exams provide the most 

direct assessment. However, because of their infrequency 

(e.g., monthly), they are not entirely suitable for early 

intervention and preventive care. Home care is timelier but 

is not always affordable (Genworth 2017). Self-reported 

data (e.g., activity diary) is affordable but lacks reliability 

if cognitive function is deteriorating.  

The limitations of current approaches have motivated 

clinicians to leverage remote home ADL monitoring 

systems with cameras, environment sensors, and motion 

sensors, which use modern sensing technologies to 

objectively record activities in real time in order to 

implement timely interventions and treatments (Bravo et 

al. 2016; Silva et al. 2015). Researchers often prefer 

accelerometer- and gyroscope-based motion sensors 

because of their high levels of sensitivity, high data 

granularity, low set-up costs, and relative unobtrusiveness 

(Haghi et al. 2017). Wearable sensors are attached to one’s 

chest, hip, and/or wrists. Object sensors are deployed on 

commonly used household items such as pillboxes, 

appliances, and doors. Each sensor generates 10 to 100 

data points per second (i.e., 10-100 Hz). Deep learning 

models, such as convolutional neural networks (CNNs), 

are the prevailing analytical approach. By simultaneously 

analyzing the signals of both wearable and object sensors, 

scholars can conduct ADL recognition (ADLR) at a high 

level (HL-ADL), mid-level (ML-ADL), and interaction 

level. Each level of granularity enables stakeholders to 

monitor selected physical (e.g., Parkinson’s progression), 

mental (e.g., dementia resulting from Alzheimer’s), and 

other health (e.g., medication nonadherence) progressions 

(Bryant et al. 2015; Jekel et al. 2015).  

Despite their benefits over conventional ADLR 

approaches, current motion sensor-based systems have 

three key drawbacks. First, most systems deploy wearable 

sensors only. Thus, they cannot identify human-

environment interactions. However, extracting such detail 

is often critical for clinicians to make timely interventions 

and diagnoses. Second, past ADLR literature applies 

standard deep learning models directly onto raw sensor 

signals. However, sensor signals contain complex cross-

sensor, temporal, and axial dependencies, especially when 

using wearable and object sensors simultaneously. 

Identifying human-environment interactions and 

maximizing ADLR performance requires carefully 

designing an approach to extract the most salient 

representation for subsequent deep learning processing 

(Goodfellow et al. 2016; Li et al. 2018). Finally, extant 

models perform specific recognition tasks on a selected 

ADL level, preventing level-by-level ADLR and, in turn, 

a thorough understanding of a patient’s physical and 

mental health progression at varying granularities (i.e., 

ADL levels). While information systems (IS) scholars are 

uniquely equipped to tackle these challenges, the existing 

health information technology (HIT) literature focuses on 

health IS (HIS), medical data use, and health data analytics 

that use traditional data sources (e.g., electronic health 

records). Motion sensor-based health analytics remains a 

nascent yet promising domain for IS scholars seeking to 

make a unique and positive societal impact. 

In this research, we adopt the computational design 

science paradigm (Rai 2017) to develop a novel 

hierarchical, multiphase deep learning-based framework 

for ADLR. This framework has three key novelties. First, 

we leverage wearable and object motion sensors 

simultaneously to model ADLs. Second, we design a 

novel 2D interaction kernel for CNNs to capture human-

object interactions. Third, we carefully design a level-by-

level and end-to-end ADLR framework with interpretable 

intermediate results to analyze ADL patterns with 

different granularities. We rigorously evaluate the 

proposed framework and its constituent components 

against state-of-the-art feature engineering and deep 

learning models using two complementary datasets with 

different ADL granularities.  
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Table 1. Overview of Three ADL Levels 

ADL Level Description Examples 
Duration 
of ADL 

Selected Practical Health 
Value and Applications 

Activity 
(Instrumental; 
HL-ADL) 

High-level motion sequences where 
a human interacts with multiple 
objects to realize a general motive  

• Food preparation 

• Taking medication 
>1 minute  

Identify activity patterns for 
caretakers 

Gesture 
(Basic; ML-
ADL) 

Middle-level motion sequences in 
which a human interacts with a 
single object to accomplish a 
particular goal 

• Open/close a 
fridge door 

• Pick up / put down 
a pillbox 

10-15 
seconds 

Identifying human-pillbox 
relationships to detect 
medication nonadherence  

Interaction 

Basic motion primitives. Context 
irrelevant, and characterized by 
relative movements between a 
human and an object 

• Push, pull, pick up, 
put down, slide 
left, slide right 

<10 
seconds 

Identify physical deterioration 
(e.g., Parkinson’s 
progression) 

 
The first dataset, Opportunity, is a publicly available 

morning activity dataset containing labels for complex 

activities (e.g., cleaning, making a sandwich) (Roggen et al. 

2010). We also utilize SilverLink, a National Science 

Foundation (NSF)-funded novel multi-accelerometer 

activity monitoring system developed by the Artificial 

Intelligence (AI) Lab at the University of Arizona 

(Maimoon et al. 2016), to collect a dataset with labels for 

basic human-object interactions (e.g., pick up, pull). Apart 

from contributing to ADLR, our use of multiple sensor 

types, our 2D interaction kernel design, and our overall 

hierarchical framework follows design principles that can 

guide future cybersecurity, health, and mobile analytics 

research. 

The remainder of this paper is organized as follows. First, 

we review healthcare IS, design science, ADLR, and deep 

learning literature to identify research gaps and propose 

research questions to explore. Second, we detail the major 

components of our research design. Subsequently, we 

present our results, contributions we make to the IS 

knowledge base, and practical implications for selected 

stakeholders. Finally, we discuss our findings and suggest 

promising future research directions.  

Research Background  

We review three literature streams: (1) healthcare IS 

literature and computational design science guidelines to 

inform and guide the development of a novel ADLR IT 

artifact, (2) motion sensor-based ADLR to gain 

knowledge on sensor signal data characteristics and 

identify prevailing ADLR methods, and (3) the state-of-

the-art deep learning architectures for sensor data pattern 

recognition and sequence modeling. 

Healthcare IS Literature and Computational 
Design Science Guidelines 

The successful dissemination of IT into the healthcare 

industry has enabled IS scholars to make remarkable 

advances in three broad areas of healthcare information 

technology: health information systems (HIS), medical 

data use, and health data analytics. Table 2 summarizes 

selected literature in each category.  

HIS and medical data usage studies employ behavioral 

theories and econometrics to explore health system 

adoption and investments, data sharing, security, and 

privacy. Despite their important contributions, the 

methods used in these studies cannot handle the volume 

and velocity of sensor data. Past health data analytics 

studies have adopted the design science paradigm for 

detecting hospital readmission, adverse events, and 

similar patients in social media and EHR contexts. Data 

analytics in mobile health contexts remains an 

understudied but societally relevant topic. Given that 

mobile IS literature has focused on web design (Adipat et 

al. 2011), service innovation (Kankanhalli et al. 2015; Ye 

and Kankanhalli 2018), and online service addiction 

(Kwon et al. 2016) to mobile devices in nonhealth 

contexts, a novel IT artifact designed for comprehensive 

ADL monitoring is critically needed. Such an artifact 

would be aligned at the intersection of health and mobile 

data analytics, potentially spearheading a new and 

promising area of IS research inquiry. Developing an IT 

artifact for advanced ADLR requires a careful approach 

to analyzing sensor data. The design science paradigm 

offers guidelines to systematically develop novel IT 

artifacts (e.g., constructs, models, methods, and 

instantiations) capable of solving salient business issues 

(Hevner et al. 2004).  
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Table 2. Summary of Selected Healthcare IS Literature 

Category Topic Year Study Focus Paradigm 

HIS Adoption & 
learning 

2011 Mukhopadhyay et 
al. 

The learning curve for physician 
referral systems 

Economic 

2016 Venkatesh et al. Adoption of eHealth Kiosk in India Behavioral 

Investment 2015 Salge et al. Mechanisms affecting HIS investment 
decisions 

Economic 

Medical 
data use 

Sharing 2011 Ozdemir et al. Incentives and switching cost for 
adopting and sharing EHR 

Economic 

2017 Ayabakan et al. Cost reduction by avoiding duplicate 
tests 

Behavioral 

2018 Adjerid et al. Reduce organizational expenditure 
with Health Information Exchange 
system 

Economic 

Security 2014 Kwon and 
Johnson 

Value of proactive security 
investments versus reactive 
investments 

Economic 

2017 Angst et al. Factors affecting data security 
technology adoption regarding 
healthcare data breaches 

Behavioral 

Privacy 2011 Anderson and 
Agarwal 

Individual’s privacy boundary in the 
health context 

Behavioral 

2017 Li and Qin EHR data anonymization Design 
Science 

Integration 2011 Oborn et al. Feasibility of EHR integration in 
multidisciplinary care 

Behavioral 

Health data 
analytics 

Social network 
based 

2015 Yan et al. Similar patient identification Design 
Science 

EHR-based 2015 Bardhan et al. Hospital readmission prediction Design 
Science 

2017 Lin et al. Hospital adverse event prediction Design 
Science 

Note: EHR = electronic health record 
 

The breadth of the IS discipline has enabled four genres 

of design science to emerge: computational, optimization, 

representation, and economics (Rai 2017). Computational 

design science provides IS scholars with three concrete 

guidelines to design novel algorithms, computational 

models, and systems for advanced data analytics 

applications (e.g., ADLR). First, the IT artifact’s design 

should be inspired by key domain characteristics. Lin et 

al. (2017) offers a recent healthcare IS example, where 

key contextual cues from EHRs guided a novel Bayesian 

multitask learning approach for predicting adverse events 

in hospitals. Second, researchers should demonstrate the 

novelty of their design and its technical superiority over 

selected baseline approaches via quantitative metrics 

(e.g., accuracy, precision, recall, F1, etc.). Finally, the 

artifact’s design should contribute situated 

implementations (e.g., software), nascent design theory 

(e.g., design principles), and/or well-developed design 

theory to the IS knowledge base (Rai 2017; Gregor and 

Hevner 2013). Executing each guideline requires 

understanding the application (in this study, motion 

sensor-based ADLR) for which the artifact is being 

developed.  

Motion Sensor-based ADLR 

ADLR uses sensors placed on humans and/or objects to 

identify ADL events at three levels of granularity: 

interaction, gesture, and activity (Roggen et al. 2010). 

Interaction recognition extracts information about 

reciprocal, physical motion primitives between an activity 

performer and an unspecified object (e.g., pull). Object 

information (e.g., “sensor is attached to the fridge”) is then 

added to the interaction (e.g., pull) to complete each 

gesture’s semantics (e.g., open the fridge). Activity 

recognition uses gesture patterns to identify complex and 

often interwoven operations that consist of temporally 
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dependent sequences of gestures. Activity (i.e., HL-ADL) 

examples include drinking coffee and eating a sandwich 

and can span several minutes. Activities can share the same 

gestures but have different gesture patterns (e.g., drinking 

from a cup for both a coffee break and to take medication). 

Figure 1 illustrates how each level is decomposed and 

relates to others. 

Most motion sensors used for ADLR (e.g., accelerometers, 

gyroscopes) have multiple axes that generate time-series 

data with temporal single-axial, cross-axial, and cross-

sensor-axial patterns. Single-axial dependency denotes the 

temporal patterns within the same axis. Cross-axial 

dependency denotes patterns such as sensor rotation. Cross-

sensor-axial dependency is the local dependency between 

axes of different sensors, denoting sensor interactions. 

Figure 2 further illustrates each dependency. 

Multiple human sensors can be attached to different body 

locations to collect comprehensive human motion data, 

while one motion sensor is often sufficient for an object 

(Roggen et al. 2010). Irrespective of sensor type, 

continuous values (e.g., acceleration) are sampled along 

each axis simultaneously. When sampled at 10 Hz (i.e., 

10 data samples per second), the sensor can generate 

864,000 data samples per axis per day, a rate beyond a 

human’s cognitive processing capability. This velocity 

and volume have motivated scholars to employ 

computational approaches for ADLR applications.  

Computational Models for ADLR 

Conventional computational ADLR models include 

classical machine learning algorithms such as 

discriminative models (e.g., support vector machine 

[SVM] in Reyes-Ortiz et al. 2016; k Nearest Neighbors 

[kNN] in Cao et al. 2012) and generative models (e.g., 

Hidden Markov Model [HMM] in Safi et al. 2016). These 

algorithms rely on manually engineered features such as 

activity duration, location, acceleration, rotation, signal 

amplitude, and motion frequency (Cao et al. 2012; Emi 

and Stankovic 2015; Safi et al. 2016). However, feature 

engineering is often labor intensive, ad hoc, and may not 

extract all salient cues. These issues have motivated 

numerous scholars to use deep learning for ADLR (Wang 

et al. 2019). Deep learning is a class of machine learning 

algorithms that use multiple layers of feed-forward 

artificial neural networks (ANNs) with nonlinear 

activation functions, error correction, and 

backpropagation to automatically learn the most salient 

features from data (LeCun et al. 2015). Table 3 

summarizes selected recent studies applying deep 

learning on motion sensor signal data for ADLR. 

While the ADL hierarchy suggests using both human and 

object sensors to maximize information for ADLR, most 

studies use human sensors only (Avilés-Cruz et al. 2019; 

Sun et al. 2018). Such systems require deploying human 

sensor networks with over 19 motion sensors on a user’s 

wrists, chest, and other body parts (Murad and Pyun 2016; 

Ordóñez and Roggen 2016; Hammerla et al. 2016; Yang 

et al. 2015). These configurations are often obtrusive and 

do not mirror real-life home monitoring scenarios. 

Moreover, the lack of object information cannot pinpoint 

the semantics of performer-object interaction and limits 

HL-ADL detection. Most extant deep learning-based 

ADLR models only focus on a selected ADL level (e.g., 

gesture recognition) and do not capture all ADL levels. 

This results in models not generalizable for all ADL levels 

and prevents a comprehensive, end-to-end understanding 

of a subject’s daily living patterns. Irrespective of 

configuration, CNNs are the prevailing deep learning 

model for analyzing sensor signal data. Figure 3 illustrates 

a common ADLR CNN architecture. 

A CNN stacks convolutional and pooling layers to 

automatically learn features from raw data in a matrix form 

(Goodfellow et al. 2016). The convolution layer applies a 

grid kernel 𝐾 on the data 𝑉 to stride across the raw data and 

extract information from local regions in the input data. 

Most ADLR studies design a CNN with one dimension 

(1D) kernels to recognize single-axial temporal patterns 

from a single sensor type:  

𝑐𝑖,𝑗 = 𝐾1,[𝑏] ⊙ 𝑉𝑖,[(𝑗−1)×𝑠𝑐,𝑏], 

where 𝑐𝑖,𝑗 denotes the output value on the convolution layer 

at the position (𝑖, 𝑗), and ⊙ is the elementwise 

multiplication. 𝐾1,[𝑏] only has one row with length 𝑏. 𝑉𝑖,[𝑘:𝑙] 

denotes the 𝑙-length data segment from column 𝑘 on the 𝑖th 

row. 𝑠𝑐  is the stride lengths on the column (temporal) 

dimension, controlling the kernel’s moving distance. Since 

these approaches extract local temporal patterns along 

different axes separately, they cannot guarantee that these 

patterns are temporally aligned (i.e., that motions along 

different axes occur together). Chen and Xue (2015) address 

this issue by altering the kernel shape to 2D. 

𝑐𝑖,𝑗 = Σ𝑛=1
𝑎 (𝐾𝑛,[𝑏] ⊙ 𝑉𝑖+𝑛−1,[(𝑗−1)×𝑠𝑐,𝑏]). 

However, this 2D kernel can only be applied to adjacent b 

rows in the input. 
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Figure 1. Example of ADL Decomposition (adapted from Roggen et al. 2010) 

Note: ADLs are decomposed hierarchically into three levels: activity (HL-ADL), gesture (ML-ADL), and interaction. Elements on each level 
follow time sequences. 

 

Figure 2. Different Dependencies in Motion Sensor Data: (a) Single-Axial, (b) Cross-Axial (x- and y-
axis correlate negatively), and (c) Cross-Sensor Axial (human sensor’s y-axis positively correlates 
with object sensor’s z-axis).  

 

 
Figure 3. Convolution and Pooling Layers in a CNN 
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Table 3. Selected Recent Studies Applying Deep Learning on Motion Sensor Signal Data for ADLR  

Year Authors 
# of object 
sensors 

# of 
human 
sensors 

Datasets Models** Task Level 

2019 
Avilés-Cruz et 
al. 

0 2 Smartphone 
Coarse-Fine CNN Locomotion 

0 2 WISDM 

2018 Zhu et al.  8 1 Opportunity+ 
DeepConvLSTM + 
GRU-based 
Seq2Seq 

HL-ADL 

2018 Sun et al. 0 19 Opportunity DeepConvLSTM ML-ADL 

2018 Liu et al. 0 1 Smartphone SVM, CNN Locomotion 

2018 Pires et al. 0 1 Smartphone ANN, DNN Locomotion 

2018 Kim et al. 0 2 
10 subjects, 9 
gesture patterns 

CNN + GRU ML-ADL 

2018 Hassan et al. 0 2 Smartphone PCA + DBN Locomotion 

2018 Li et al. 17 19 Opportunity Hybrid, AE ML-ADL, HL-ADL 

2017 
Almaslukh et 
al. 2017 

0 1 Smartphone SAE + SVM Locomotion 

2017 
Murad and 
Pyun 

0 19 Opportunity 
LSTM Locomotion, ML-ADL 

0 20 Skoda checkpoint 

2016 
Ordóñez and 
Roggen 

0 19 Opportunity, 
DeepConvLSTM Locomotion, ML-ADL 

0 20 Skoda checkpoint 

2016 
Hammerla et 
al. 

0 19 Opportunity 
DNN, CNN, LSTM ML-ADL 

0 3 PAMAP2 

2015 
Chen and 
Xue 

0 1 
100 subjects, 8 
functional 
movements 

CNN Locomotion 

2015 Yang et al. 
33 19 Opportunity 

CNN ML-ADL 
0 2 Hand Gesture 

2014 Zeng et al. 
0 1 Opportunity 

CNN ML-ADL 
0 1 Skoda checkpoint 

Note: ** GRU = Gated Recurrent Unit; Seq2Seq = Sequence-to-Sequence Model; PCA = Principle Component Analysis; DBN = Deep 
Belief Network; AE = AutoEncoder; SAE = Stacked AutoEncoder, LSTM = Long Short-Term Memory, DNN = Deep Feed-Forward Neural 
Network. + “Opportunity” is an ADL dataset collected by a European Commission grant project. 

 

Since CNNs were not designed to analyze temporal data, 

ADLR studies stack a recurrent neural network (RNN) to 

capture sequential human-object interactions for 

locomotion and gesture (ML-ADLs) recognition 

(Hammerla et al. 2016; Murad and Pyun 2017; Ordóñez 

and Roggen 2016).  

RNNs are deep learning algorithms that include edges 

connecting adjacent time steps to capture temporal 

dependencies from sequential data (Lipton et al. 2015). 

Conventionally, RNN and its variants (e.g., LSTM, GRU) 

output one label for an entire sequence or generate one 

output label after processing a new input in the sequence. 

However, producing one label for an entire sequence 

prevents fine-grained, accurate, and ongoing HL-ADL 

recognition, which is critical for timely senior citizen 

care. Activities consist of interwoven and temporally 

dependent gesture sequences. Additionally, different 

activities can share similar gesture and locomotion 

patterns. A common approach to providing a series of 

labels for a sequence of activities uses a GRU-based 

Seq2Seq model (Zhu et al. 2018). Figure 4 depicts such a 
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model for detecting HL-ADL label sequences from 

inputted gesture sequences. 

The GRU-based Seq2Seq model “translates” raw sensor 

signals into human interpretable labels while maintaining 

the activity semantics using varied-length encoder and 

decoder recurrent networks (Cho et al. 2014; Sutskever et 

al. 2014). The encoder processes the input sequence 𝑋 =
{𝑥𝑡 , 𝑡 = 1,2, … , 𝑛} to capture local and global temporal 

patterns and represents them in a vector 𝒔. The decoder 

then generates output sequence 𝑌 = {𝑦𝑡 , 𝑡 = 1,2, … , 𝑚} 

based on 𝒔. When recognizing an activity, the vector 𝒔 

encodes the temporal patterns of the input (e.g., activity 

states) for the decoder to generate the ADL labels. If the 

output length (i.e., length of the HL-ADL label sequence) 

matches that of the input sequence, HL-ADLs are 

recognized for each time step at a finer granularity than in 

conventional approaches (Zhu et al. 2018).  

Research Gaps and Questions 

Our literature review revealed several research gaps. First, 

few ADLR studies use both human and object motion 

sensors, which often leads to scholars deploying a large 

volume of wearable human sensors that can be obtrusive, 

unrealistic in common home settings, and can limit 

comprehensive ADLR. Second, although deep learning-

based ADLR studies address manual feature engineering 

issues, current deep learning models can only extract the 

single-axial or cross-axial temporal dependency within 

one sensor. Leveraging human-object interactions for 

comprehensive ADLR necessitates novel deep learning 

architectures that extract cross-sensor axial dependency 

between human and object motion sensors. Third, extant 

models are dedicated to a specific recognition task on a 

selected ADL level with a particular time scope (e.g., 5-

10 second data segments to recognize a gesture). This 

limits the variety of features extracted from sensor data, 

as well as the ability of ADLR models to analyze ADLs 

with different granularities. In order to comprehensively 

understand a senior citizen’s ADL performance, CNNs 

should be used to capture local data dependency for 

shorter (i.e., around 10 seconds), lower-level ADLs (e.g., 

interaction and gesture). However, the temporal patterns 

of these interactions/ML-ADLs should be modeled with 

RNNs (e.g., Seq2Seq) to recognize longer (e.g., 5 

minutes), high-level ADLs. Based on these research gaps, 

the following research questions are posed for study: 

• How can human and object motion sensors be used 

jointly for ADLR? 

• How can cross-sensor-axial dependency be extracted 

from a pair of sensors and incorporated in ADLR? 

• How can multiple levels of ADLs be recognized 

within an end-to-end framework? 

A Hierarchical Multiphase ADL 
Recognition Framework  

Guided by the ADL hierarchy, we design a novel 

hierarchical, multiphase ADL recognition framework. 

The framework consists of three components: interaction 

extraction, gesture (ML-ADL) recognition, and activity 

(HL-ADL) recognition. Each component outputs 

interpretable labels (e.g., human-object interaction, 

gesture) as suggested by the ADL hierarchy, enhancing 

subsequent task performance by limiting the intermediate 

result’s dimensionality. Figure 5 illustrates the overall 

framework. The interaction extraction and gesture 

recognition components generate labels for local, short 

data samples (e.g., 5-8 seconds). A sliding window 

strategy generates ML-ADL sequences (e.g., five 

minutes) for the activity recognition component (Huynh 

et al. 2008). We discuss each component and their 

respective evaluations in the ensuing subsections. 

Interaction Extraction 

The ADL hierarchy indicates that gestures consist of human-

object interactions (Roggen et al. 2010). The framework’s 

first step extracts the dominant human-object interactions for 

gesture recognition. Gestures can be grouped due to their 

homogenous relative motions regardless of context (e.g., the 

object moves up in “pick up pillbox” and “pick up coffee 

cup” gestures, and the object moves toward the human in 

“open fridge door” and “open door inward” gestures). 

Capturing this homogeneity requires decomposing gestures 

along the three anatomical axes (sagittal, vertical, and 

frontal) into six generic interactions: “push,” “pull,” “pick 

up,” “put down,” “slide left,” and “slide right” (Fan et al. 

2011). The opposite of generic interaction is “no 

interaction.” We design a novel interaction-based CNN to 

extract the interaction between each human-object sensor 

pair. Data from a pair of human and object motion sensors 

are stacked along the sensor channel direction as the input 𝑉 

of interaction extraction, as shown in Figure 6. 
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Figure 4. GRU-based Seq2Seq Model for HL-ADL Recognition 

 

Figure 5. The Proposed Research Design: A Hierarchical Multiphase ADL Recognition Framework 

 

  
Conventional 2D Kernel 

• Operates on one input (e.g., one sensor) 

• Kernel rows apply to consecutive rows in the input 

• Convolution result represents the feature in the focal 
region 

Proposed 2D Interaction Kernel 

• Operates on two data sources 

• Two kernel rows apply to one channel of each source 

• Convolution result captures the feature between each pair 
of sensor channels 

Figure 6. Illustration of Conventional 2D Kernel and Proposed 2D Interaction Kernel 
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Cross-sensor-axial dependency in motion sensor data 

represents human-object interactions. We utilize CNN’s 

strength in local dependency extraction. Conventional 2D 

kernels 𝑐𝑖,𝑗 = Σ𝑛=1
𝑎 (𝐾𝑛,[𝑏] ⊙ 𝑉𝑖+𝑛−1,[(𝑗−1)×𝑠𝑐,𝑏]) are 

directly applied on 𝑎 (𝑎 > 1) spatially adjacent rows of 

the input 𝑉 to capture cross-axial patterns within a sensor 

(left side of Figure 6, Chen and Xue 2015). However, this 

conventional 2D convolution kernel cannot extract cross-

sensor-axial patterns. We propose a novel 2D interaction 

kernel for CNNs (right side of Figure 6) formulated as 

follows:  

𝑐(𝑝−1)×𝑅𝑞+𝑞,𝑗 = 𝐾1,[𝑏] ⊙ 𝑉𝑝,[(𝑗−1)×𝑠𝑐,𝑏]
𝐻 + 𝐾2,[𝑏]

⊙ 𝑉𝑞,[(𝑗−1)×𝑠𝑐,𝑏]
𝑂 , 

𝑝 ∈ {1,  2,  … ,  𝑅𝑝},  𝑞 ∈ {1,  2,  … ,  𝑅𝑞}, 

where the input 𝑉 consists of two separate input: 𝑉𝐻 with 

𝑅𝑝 rows of human motion sensor channels and 𝑉𝑂 with 

𝑅𝑞 rows of object motion sensor channels. 

The 2D interaction kernel 𝐾 includes two rows: the first 

row 𝐾1 applies to a human sensor axis, and the second row 

𝐾2 applies to an object motion sensor axis. Both kernel 

rows extract information from the same local time 

window. These two rows jointly capture cross-sensor 

axial dependency from different sensor types. We install 

this novel kernel on the first layer of our five-layer 

interaction extraction convolutional neural network (I-

CNN) to ensure the extracted patterns are temporally 

aligned. The I-CNN classifies the data from a pair of 

human and object motion sensors into interaction labels 

(e.g., “no interaction,” “push,” “pick up”). We detail I-

CNN’s full technical implementation in Appendix A. 

Gesture (ML-ADL) Recognition 

Unlike extant gesture recognition models (e.g., 

DeepConvLSTM) that directly classify raw sensor 

segments into gesture classes, we leverage the extracted 

interaction and recognize gestures with a heuristic 

approach. I-CNN outputs the most likely interaction 𝐼𝑛 

between human and objectn (e.g., “push,” “no 

interaction”) and its probability 𝑝𝑛 for each human-object 

data segment. We pass the extracted interactions from all 

human-object pairs to the gesture recognition phase to 

infer the most likely gesture. We propose a heuristic-

based four-step process (I-CNN-GR) for the gesture (ML-

ADL) recognition phase in our framework to aggregate 

and recognize the most salient gesture from all human-

object pairs. We assume that (1) one person can interact 

with only one object at a time, and (2) if one gesture 

exists, its underlying interaction should be the most 

salient among all the interactions. These assumptions 

guarantee I-CNN-GR will provide robust recognition 

when deployed in a multiresident environment, where 

residents can coincidentally use different objects at the 

same time, resulting in various candidate interactions.  

Step 1. If ∀ 𝑗 ∈ {1, 2, … , 𝑛}, 𝐼𝑗 = “no interaction,” then 

output “No Gesture.” 

Step 2. Sort {𝐼𝑗} based on 𝑝𝑗 in descending order. 

Step 3. Find the first 𝐼𝑘 where 𝐼𝑘 ≠ “no interaction.” 

Step 4. Map (𝐼𝑘, 𝑂𝑏𝑗𝑒𝑐𝑡𝑘) to the corresponding gesture 

and output the gesture. 

Step 1 outputs “no gesture” if the human does not interact 

with any object. Otherwise, Steps 2 and 3 identify the most 

likely (confident) human-object interaction recognized by 

I-CNN. The corresponding object information is then 

incorporated with the interaction in Step 4 for gesture 

mapping (e.g., (push, fridge door) → “close the fridge”).  

Activity (HL-ADL) Recognition 

Since HL-ADLs are motion sequences in longer time 

spans (e.g., 5 minutes), a one-second stride-length sliding 

window segments raw sensor data for I-CNN-GR. This 

generates a sequence of gestures (one gesture label per 

second) for the activity (HL-ADL) Recognition phase. 

The activity recognition phase adopts a GRU-based 

Seq2Seq model (S2S_GRU) to learn the temporal gesture 

patterns and assign HL-ADL labels for each gesture in the 

sequence (Zhu et al. 2018). The encoder network takes the 

gesture sequence 𝑋 = [𝑥1, 𝑥2, ⋯ , 𝑥𝑛] as input, where each 

𝑥𝑡 is a gesture label (e.g., “open fridge,” “close drawer”) 

at time step 𝑡.  

The GRU cells process the entire gesture sequence and 

learn to extract and store the most salient short-term and 

long-term temporal gesture patterns in the hidden cell 

states. The final cell state is encoded as the semantics vector 

𝒔, which generates HL-ADL labels for 𝑋 (Zhu et al. 2018). 

Vector 𝒔 is repeated as the input for all 𝑛 decoding time 

steps. The decoder’s GRU cell extracts information from 

different dimensions of 𝒔 for each time step.  
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Table 4. A Summary of the Proposed Hierarchical ADL Recognition Framework 

Phase Task Model Input Output Examples 

1 
Interaction 
extraction 

I-CNN 

Raw human and object 
motion sensor data from one 
human-object sensor pair 

(< 10 seconds) 

An interaction 
label: No 
interaction, push, 
pull, pick up, put 

down 

Raw sensor data → 
"push” interaction 

2 
Gesture 
recognition 

Heuristic-based 

Interaction labels from all 
human-object sensor 
pairs: No Interaction, Push, 
Pull, Pick up, Put Down (< 
15 seconds) 

ML-ADL label: open 
fridge, close door, 
etc. 

“push” + “fridge” → 
“close fridge” gesture 

3 
Activity 
recognition 

S2S_GRU 

A sequence of ML-ADL 
labels: Open fridge – Close 
fridge – Use fork … 

(> 1 minute) 

A sequence of HL-
ADL labels: food 
prep – food prep – 
dining … 

“open fridge – close 
fridge – use fork -…- 
open dishwasher” → 
“food prep – food prep 
– dining -…- clean-up” 
activity 

Extracted information is transformed by a shared fully 

connected layer to a lower dimension that matches the 

number of HL-ADL labels for classification; a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 

function selects the most probable predefined label (e.g., 

“food preparation” for the “open fridge” gesture) as the 

output 𝑦𝑡  for time t. Through this hierarchical, multiphase 

ADL recognition framework, interactions, gestures, and 

activities are automatically recognized from human and 

object motion sensor data. We summarize the process of 

our proposed framework in Table 4. 

Experimental Study 

A core tenet of the computational design science 

paradigm is rigorously evaluating the proposed IT artifact 

against well-established benchmark methods. To this end, 

we evaluate each component and the entirety of the 

proposed framework.  

Two datasets are used as ground truth: “Opportunity” 

(OPPO) and a human-object interaction dataset (INTER) 

(Table 5). OPPO is a publicly available morning activity 

EU dataset containing 133 human and 109 object motion 

sensor channels, sampling at 30 Hz, with hierarchical 

ADL labels (ML-ADLs and HL-ADLs). Roggen et al. 

(2010) deployed a comprehensive wearable sensor 

network consisting of accelerometers, gyroscopes, 

magnetometers, and integrated inertial measurement 

units. This dataset is widely used for benchmarking in 

ADLR studies (Ordóñez and Roggen 2016; Hammerla et 

al. 2016; Yang et al. 2015; Zeng et al. 2015). OPPO’s rich 

labels allow us to divide the overall dataset into testbeds 

for different evaluations (Table 5). Based on relevance to 

the ML-ADL labels, we selected eight object motion 

sensors that are attached to the most representative 

objects. These sensors were placed on two doors, three 

drawers, a fridge door, a dishwasher door, and a cup. In 

total, our selected dataset contained 27 accelerometer 

channels (9 triaxial sensors) out of the 242 data channels 

in the original OPPO dataset. 

We also collected a human-object interaction dataset 

(INTER) using the NSF-supported SilverLink smart 

home monitoring system (Chuang et al. 2015; Maimoon 

et al. 2016; Yu et al. 2017) to evaluate the interaction 

extraction phase. SilverLink consists of five coin-size 

triaxial accelerometers with a 25 Hz sampling rate and 

±2G sensitivity. The INTER dataset was generated by a 

controlled lab experiment, similar to the drill runs in the 

OPPO dataset (Roggen et al. 2010). One accelerometer 

was attached to the subject as a pendant on the chest. Four 

object motion sensors were placed on the fridge door, 

pillbox, bedroom door, and bathroom door to collect 

interactions during food-, medication-, and hygiene-

related ADLs. Subjects were instructed to walk to the 

object, perform specific human-object interactions, and 

walk away, simulating the daily human-object interaction 

patterns. We labeled each segment as “push,” “pull,” 

“pick up,” “put down,” or “no interaction.” 
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Table 5. A Summary of Research Testbeds 

Datasets Sensors Used  Testbed Labels Number or % 

OPPO 

1 Wearable Acc.:  

• Back 
8 Object Acc.: 

• Door 1 

• Door 2 

• Fridge 

• Dishwasher 

• Drawer 1 

• Drawer 2 

• Drawer 3 

• Coffee cup 

OPPO-HL:  
1,135 HL-ADL segments 
 
300 ML-ADL & HL-ADL labels 
per segment (one per second) 
 
9,000 raw data samples per 
segment 
 
27 sensor channels per 
sample 

Relaxing 17.91% 

Coffee time 15.49% 

Early morning 23.82% 

Clean up 12.09% 

Sandwich time 30.69% 

OPPO-ML: 
2,394 gesture (ML-ADL) 
segments 
 
240 raw data samples per 
segment 
 
27 sensor channels per 
sample 

Open door 1 115 

Close door 1 121 

Open door 2 113 

Close door 2 119 

Open fridge 209 

Close fridge 202 

Open dishwasher 131 

Close dishwasher 133 

Open drawer 1 124 

Close drawer 1 123 

Open drawer 2 118 

Close drawer 2 120 

Open drawer 3 129 

Close drawer 3 131 

Drink from cup 253 

Put away cup 253 

INTER 

1 Wearable Acc.:  

• Chest 
 
4 Object Acc.: 

• Bedroom door 

• Bathroom door 

• Fridge 

• Pillbox 

INTER: 
8,000 interaction segments 
 
240 data samples per segment 
 
15 sensor channels per 
sample  

No interaction 1,600 

Push 1,600 

Pull 1,600 

Pick up 1,600 

Put down 1,600 
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To evaluate our design in an unobtrusive, real-world 

setting, we used the back accelerometer data from OPPO 

and the chest pendant sensor data from INTER. These 

locations were less obtrusive but provided information 

about HL-ADLs and locomotion transition (Atallah et al. 

2011). We obtained 8,000 interaction segments from 

INTER and extracted 2,394 gesture and 1,135 activity 

segments to form our three testbeds: INTER, OPPO-ML, 

and OPPO-HL, respectively. OPPO-ML segments are 

eight-second segments containing one ML-ADL at the 

center. OPPO-HL are five-minute segments extracted 

with a 0.5-minute sliding window (similar strategy to 

Huynh et al. 2008). The INTER testbed is balanced with 

1,600 segments in each class. OPPO-ML is slightly 

imbalanced with more fridge and cup-related gestures. 

OPPO-HL is also imbalanced with more sandwich 

preparation and less coffee making, clean up, and 

relaxation. This reflects the varying actual time 

requirements for these daily activities. Each INTER and 

OPPO-ML segment has one label, while each OPPO-HL 

segment has 300 labels corresponding to each data sample 

to represent the interweaving ADLs correctly performed 

by the subject. 

Experiment Design and Performance Metrics 

We used both testbeds to conduct four sets of evaluations: 

interaction extraction, gesture recognition, activity 

recognition, and end-to-end evaluation. Each corresponds 

to one phase in our proposed framework. Table 6 provides 

a full summary of the experiments. Experiment 1 evaluates 

interaction extraction performance from human-object 

motion sensor pairs. We used the 8,000 interaction 

segments for this experiment. Signal features are extracted 

from each interaction segment for classical machine 

learning benchmarks. Extracted features include minimum, 

maximum, mean, standard deviation, energy, and entropy 

(Bao and Intille 2004). We evaluated the proposed I-CNN 

model against kNN, SVM (Cao et al. 2012), and CNN-1D 

using standard performance metrics of precision, recall, 

and F1 score. For each class 𝐶𝑖, these metrics are as follows. 

Precision𝐶𝑖 =
Correctly predicted 𝐶𝑖

Total predicted 𝐶𝑖

 , 

Recall𝐶𝑖 =
Correctly predicted 𝐶𝑖

Total True 𝐶𝑖

 , 

𝐹1
𝐶𝑖 =

2 × Precision𝐶𝑖 × Recall𝐶𝑖

Precision𝐶𝑖 + Recall𝐶𝑖
 . 

We calculated the macro-averaged F1 score using each 

category’s F1 score to evaluate the classification 

performance over 𝑁 categories (𝑁 = 5 in Experiment 1) 

(Forman 2003), where 

macro-averaged 𝐹1 =
1

𝑁
∑ 𝐹1

𝐶𝑖

𝑁

𝑖=1

 . 

Experiment 2 evaluated I-CNN-based Gesture 

Recognition (I-CNN-GR) against state-of-the-art gesture 

recognition benchmarks. I-CNN-GR mapped each 

gesture segment to one of the 16 OPPO-ML labels based 

on the eight possible interactions extracted by I-CNN 

from each human-object sensor pair. As in Experiment 1, 

signal features were extracted from each gesture segment 

for classical machine learning benchmarks. Raw data was 

used for deep learning models (I-CNN-GR, 

DeepConvLSTM, CNN-1D, and CNN-2D). We 

evaluated performance using precision, recall, and F1, and 

also used the macro-averaged F1 (𝑁 = 16).  

Experiment 3 compares S2S_GRU against other 

sequential learning benchmarks (e.g., HMM, 

S2S_LSTM) by evaluating HL-ADL sequence quality. I-

CNN-GR extracts 300 gesture labels from raw sensor data 

for each activity segment as the input for experiment 

models. With the input, experiment models predict HL-

ADL label sequences (e.g., “food-food-food-medication-

medication”). Two metrics proposed by Zhu et al. 

(2018)—accuracy and block Levenshtein distance 

(BLD)—evaluate the structure of these HL-ADL 

sequences (i.e., duration of an activity, boundary of 

different activities).  

Accuracy =
Correct labels in the sequence

Length of the sequence
 . 

Accuracy evaluates how well the recognized HL-ADL 

label sequence reflects the real start and end time for HL-

ADLs. 

𝐵𝐿𝐷
= 𝐿𝐷(Recognized HL-ADL Blocks, True HL-ADL Blocks), 

where 𝐿𝐷 is the Levenshtein distance, denoting the 

number of deletions, insertions, or substitutions required 

to transform sequence A to sequence B (Levenshtein 

1966). The successive HL-ADL labels are aggregated to 

HL-ADL blocks to condense the sequence while 

preserving the order of HL-ADLs (e.g., “food-food-food-

non-med-med” HL-ADL label sequence, condensed as 

the “food-non-med” block sequence). 
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Table 6. A Summary of Experiment Designs 

Exp. Our Model Benchmarks 
Target 
Phase 

Testbed Evaluation Metrics Prior Study 

# 1 I-CNN 

Signal features + 
kNN 

Interaction 
extraction 

INTER 
Precision, recall, F1, 
averaged F1 

Cao et al. 2012 Signal features + 
SVM 

CNN-1D 

# 2 I-CNN-GR 

DeepConvLSTM 

Gesture 
recognition 

OPPO-
ML  

Precision, recall, F1, 
averaged F1 

Ordóñez and Roggen 
2016; Chen and Xue 
2015; Cao et al. 2012; 
Bao and Intille 2004 

CNN-1D 

CNN-2D 

Signal features + 
SVM 

Signal features + 
DT 

# 3 
I-CNN-GR-
S2S_GRU 

I-CNN-GR-
S2S_LSTM 

Activity 
recognition 

OPPO-
HL 

Accuracy, average 
block Levenshtein 
distance (ABLD) 

Chowdhury et al. 2013; 
Zhu et al. 2018 

I-CNN-GR-HMM 

# 4 
I-CNN-GR-
S2S_GRU 

Signal Features + 
NB + LDA 
SAE + SVM 

End-to-End 
OPPO-
HL 

Accuracy @ 1, 
Accuracy @ 2 

Huynh et al. 2008; 
Almaslukh et al. 2017 

Note: Exp. = Experiment 

 

We further averaged BLDs on all sequences to obtain the 

averaged BLD (ABLD) in order to evaluate the model’s 

HL-ADL sequence-generating quality. 

𝐴𝐵𝐿𝐷 =
1

𝑛
∑ 𝐵𝐿𝐷sequence 𝑖 .

𝑛

𝑖=1

 

Experiment 4 compares the end-to-end ADLR 

performance of our hierarchical framework and selected 

state-of-the-art high-level activity recognition benchmarks. 

Because prevailing ADLR models produce a label for an 

input segment (Li et al. 2018; Ordóñez and Roggen 2016), 

the accuracy score is used to evaluate the predicted label 

against the ground truth. Our ADLR model processed the 

raw data hierarchically and obtained an HL-ADL label 

sequence for each segment. We selected the majority label 

(i.e., the label with the highest count) as the predicted 

activity label for each segment. 

The first benchmark is a stacked autoencoder-based 

activity recognition model (Almaslukh et al. 2017; Li et al. 

2018). Sensor data representation was automatically 

learned with two stacked and greedily trained 

autoencoders. SVM classified the condensed data 

representation to classify sensor segments into one of the 

HL-ADL labels. The second benchmark is a topic-

modeling-based activity recognition model (Huynh et al. 

2008; Ihianle et al. 2016; White 2018). Sensor data were 

considered as vocabularies in the corpora. Latent Dirichlet 

Allocation (Blei et al. 2003) extracted the underlying HL-

ADL activities as topics in an unsupervised manner. In 

order to assign an HL-ADL label to each segment’s most 

likely topic, we constructed a confusion matrix by mapping 

each segment’s most likely topics and its majority HL-

ADL label. The Hungarian algorithm (Kuhn 1955) 

calculated the optimized assignment that maximizes the 

label prediction accuracy (Table D8). Finally, each 

segment obtained a predicted HL-ADL label based on its 

most likely topic. 

Each OPPO-HL segment contains interweaving HL-ADLs 

during the five-minute duration. On average, 90% of the 

data had a label with top-two counts (see Appendix B for 

additional details). Therefore, we created two sets of 

ground truth labels for evaluation: TOP-1 and TOP-2. 
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TOP-1 consists of the majority HL-ADL label in each 

segment, while TOP-2 contains the labels with the top and 

second highest counts. TOP-2 statistics are summarized in 

Appendix B. Inspired by metrics such as “precision at k” 

and “top-N accuracy” (Cremonesi et al. 2010; Kelly 2007), 

we named the accuracy scores evaluated on TOP-1 and 

TOP-2 “Accuracy @ 1” (Acc@1) and “Accuracy @ 2” 

(Acc@2), with formulas as follows: 

Accuracy @ 1 =
count𝑖=1

𝑁 (pred_label𝑖 = TOP-1𝑖  )

𝑁
, 

Accuracy @ 2 =
count𝑖=1

𝑁 (pred_label𝑖 ∈ TOP-2𝑖  )

𝑁
. 

Accuracy @ 1 measures how well a model can recognize 

the major activity within a segment. Accuracy @ 2 

measures how well a model avoids mistakenly labeling a 

segment into less-likely activities. All models were trained 

and tested with 10-fold cross-validation. We conducted 

paired t-tests on all macro-averaged F1 scores, accuracies, 

and ABLDs. All experiments were conducted in an Ubuntu 

16.04-based Python 3.5 environment on a workstation with 

i5-4430 CPU and 24 GB memory. The deep learning 

models (i.e., I-CNN, DeepConvLSTM, S2S_GRU, 

S2S_LSTM) were implemented with Keras (Chollet 2015), 

the HMM with hmmlearn (Lebedev 2016), the LDA with 

Gensim (Řehůřek and Sojka 2010), the Hungarian 

algorithm with SciPy (Millman and Aivazis 2011), and 

other benchmarks with scikit-learn (Pedregosa et al. 2011). 

Appendix D summarizes each model’s parameters for 

replicability purposes.  

Experiment Results 

Experiment 1: Interaction Extraction 

We evaluated our proposed I-CNN model with a 2D 

interaction kernel with kNN, SVM, and CNN with 1D 

kernel (CNN-1D). The precision, recall, and F1 scores of 

the five labels are summarized in Table 7. The highest 

scores are highlighted in boldface. Overall, I-CNN, kNN, 

and CNN-1D showed high precision, recall, and F1 scores 

compared to SVM. Further statistical tests show that the 

proposed CNN model (I-CNN) achieved an averaged F1 

score of 0.736, significantly outperforming benchmarks 

kNN (0.669), SVM (0.614), and CNN-1D (0.665). 

Classical machine learning methods such as kNN and 

SVM classified more interaction segments to the “no 

interaction” category, resulting in lower recall in the four 

generic interaction categories. CNN-based methods were 

less likely to omit a generic interaction and could better 

distinguish between generic interactions and “no 

interaction” signals. In general, the CNN-based methods 

seem promising for interaction extraction in home 

monitoring use cases. The 2D interaction kernel in I-CNN 

extracts cross-sensor axial dependency, which helped I-

CNN outperform CNN-1D. The results show the 

advantage of I-CNN in the interaction extraction phase, 

ensuring a sound foundation for the subsequent gesture 

recognition phase. 

Experiment 2: I-CNN-GR vs. Gesture Recognition 
Benchmarks 

Experiment 2 compared the gesture recognition 

performance between I-CNN-GR and benchmarks 

(DeepConvLSTM, CNN-1D, CNN-2D, SVM, and 

Decision Tree). Our I-CNN-GR model achieved an F1 

score of 0.85, outperforming all the benchmarks with 

statistically significant margins. Although Ordóñez and 

Roggen (2016) reported that DeepConvLSTM 

achieved an averaged F1 score of 0.69 using 113 

wearable accelerometer channels, this state-of-the-art 

model’s performance dropped significantly (F1 = 0.25) 

when its input was from different sensor types (one 

wearable and eight object motion sensors, 27 channels 

in total) and its model parameter size was restricted. 

Table 8 summarizes the detailed precision, recall, and 

F1 scores of the 16-class classification. The highest 

scores are highlighted in bold font. 

DeepConvLSTM classified most data segments to 

fridge-, dishwasher-, and cup-related gestures, and SVM 

classified data to cup-related gestures. Both approaches 

learned the majority of data classes instead of gesture 

features, leading to low recognition performances 

(weighted F1 of 0.11 for SVM and 0.25 for 

DeepConvLSTM). CNN-1D and CNN-2D performed 

very well in recognizing object-specific patterns (e.g., 

drawer-related [F1 ranges from 0.77 to 0.87 for CNN-

1D] and fridge-/dishwasher-related [F1 ranges from 0.90 

to 0.98 for CNN-2D)] gestures), resulting in less 

generalizable models for arbitrary object combinations 

in real-life scenarios. I-CNN-GR demonstrated a 

balanced performance (SD = 0.069) across all 16 gesture 

classes. These results indicate that I-CNN-GR can 

leverage data from different sensor types by modeling 

human-object interactions and can effectively extract 

generalizable features for gesture recognition. 
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Table 7. Interaction Extraction Performance of I-CNN vs. Benchmarks 

 
I-CNN kNN (k = 1) SVM (RBF kernel) CNN-1D 

P R F1 P R F1 P R F1 P R F1 

No 
Interaction 

0.685 0.507 0.583 0.415 0.611 0.494 0.511 0.588 0.547 0.686 0.485 0.568 

Push 0.682 0.763 0.720 0.738 0.701 0.719 0.540 0.626 0.580 0.710 0.667 0.688 

Pull 0.682 0.833 0.750 0.797 0.684 0.736 0.628 0.564 0.594 0.632 0.860 0.729 

Pick up 0.830 0.749 0.787 0.767 0.668 0.714 0.712 0.554 0.624 0.681 0.548 0.607 

Put down 0.836 0.847 0.842 0.742 0.632 0.683 0.719 0.729 0.724 0.675 0.801 0.732 

Averaged 
F1 

0.736*** 0.669 0.614 0.665 

Note: *** p-value<0.001. Highest scores are given in bold 

Table 8. Gesture Recognition Performance of I-CNN-GR vs. Benchmarks 

 I-CNN-GR DeepConvLSTM CNN-1D CNN-2D SVM + Features DT + Features 

 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 

Open door 1 0.85 0.92 0.88 0.00 0.00 N/A  0.47 0.84 0.60 0.51 0.81 0.63 0.23 0.12 0.16 0.74 0.71 0.73 

Close door 1 1.00 0.73 0.84 N/A 0.00 N/A 0.64 0.47 0.54 0.66 0.52 0.58 0.23 0.05 0.09 0.71 0.72 0.71 

Open door 2 0.92 1.00 0.96 0.00 0.00 N/A  0.58 0.84 0.69 0.76 0.90 0.83 0.15 0.05 0.08 0.66 0.63 0.64 

Close door 2 1.00 0.82 0.90 N/A 0.00 N/A  0.73 0.53 0.62 0.89 0.72 0.79 0.27 0.06 0.10 0.64 0.69 0.67 

Open fridge 0.81 0.81 0.81 0.22 0.58 0.32 0.87 0.88 0.88 0.92 0.93 0.93 0.13 0.05 0.07 0.73 0.75 0.74 

Close fridge 0.73 0.80 0.76 0.12 0.35 0.17 0.89 0.83 0.86 0.93 0.86 0.90 0.23 0.11 0.15 0.73 0.73 0.73 

Open 
dishwasher 

0.85 1.00 0.92 0.60 0.58 0.59 0.94 0.91 0.92 0.95 0.95 0.95 N/A 0.00 N/A 0.66 0.68 0.67 

Close 
dishwasher 

0.95 1.00 0.97 0.46 0.30 0.37 0.94 0.96 0.95 0.98 0.98 0.98 0.67 0.02 0.03 0.70 0.67 0.69 

Open drawer 1 0.75 0.92 0.83 0.07 0.04 0.05 0.86 0.88 0.87 0.59 0.68 0.63 0.15 0.05 0.07 0.80 0.82 0.81 

Close drawer 1 0.92 0.73 0.82 N/A 0.00 N/A  0.92 0.75 0.83 0.75 0.63 0.69 0.23 0.06 0.09 0.72 0.73 0.73 

Open drawer 2 0.70 0.70 0.70 N/A 0.00 N/A  0.85 0.65 0.77 0.67 0.49 0.57 0.00 0.00 N/A 0.76 0.77 0.76 

Close drawer 2 0.82 0.82 0.82 N/A 0.00 N/A  0.91 0.62 0.73 0.76 0.63 0.69 0.00 0.00 N/A 0.73 0.70 0.71 

Open drawer 3 0.73 0.92 0.82 0.29 0.05 0.09 0.70 0.77 0.73 0.58 0.78 0.67 0.44 0.03 0.06 0.70 0.66 0.68 

Close drawer 3 0.91 0.71 0.80 0.2 0.05 0.08 0.76 0.84 0.80 0.77 0.81 0.79 0.18 0.02 0.04 0.74 0.73 0.74 

Drink from cup 0.88 0.84 0.86 0.28 0.76 0.41 0.90 0.88 0.89 0.91 0.88 0.89 0.14 0.86 0.24 0.77 0.78 0.78 

Put away Cup 0.95 0.86 0.90 0.18 0.14 0.16 0.81 0.78 0.80 0.90 0.82 0.85 0.21 0.31 0.25 0.75 0.75 0.75 

Averaged F1  

(SD+) 

0.85 

(0.069) 

0.25*** 

(0.173) 

0.77* 

(0.117) 

0.77* 

(0.133) 

0.11*** 

(0.068) 

0.72*** 

(0.043) 

Note: *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001.+: SD = standard deviation. Highest scores are given in bold.
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In real-life scenarios, some gestures are likely to follow 

particular gestures and co-occur in a short time period 

(e.g., “close the fridge” shortly after “open the fridge”). 

Therefore, an alternate design choice incorporates 

historical information (i.e., the most recent gestures) to 

recognize upcoming gestures.  

We conducted an additional experiment to ascertain the 

effect of including historical information with these 

correlations on model performances. Appendix C 

summarizes all experiment details. Overall, we found that 

including historical information as features resulted in 

more accurate gesture recognition for non-interaction-

based benchmarks (e.g., DT + signal features). However, 

none of the benchmark methods outperformed the 

proposed heuristic-based I-CNN-GR model.  

Experiment 3: S2S_GRU vs. HMM/S2S_LSTM 

Accuracy and ABLD measured HL-ADL sequence 

quality. As summarized in Table 9, Seq2Seq models 

(S2S_GRU and S2S_LSTM) outperformed HMM using 

both metrics. Statistical tests confirmed that S2S_GRU 

performed significantly better than S2S_LSTM using 

both metrics (p < 0.05). S2S_GRU’s low ABLD score 

(0.44) and high accuracy (79.6%) indicate that it can 

better extract temporal high-level activity patterns and 

recognize HL-ADLs from the gesture sequences than 

other benchmarks. This is practically valuable for real-life 

home monitoring systems in anomaly detection, daily 

living pattern visualization, and other mobile health 

applications (e.g., food-intake frequency monitoring, 

drug adherence monitoring, etc.). 

Experiment 4: Hierarchical ADLR Framework 
vs. Nonhierarchical HL-ADLR Benchmarks 

Experiment 4 evaluates each model’s predicted HL-ADL 

against two ground truth label sets: TOP-1 and TOP-2. 

Our proposed hierarchical ADLR framework outperforms 

nonhierarchical benchmarks with statistically significant 

margins (p-value < 0.001) on Acc@1 and Acc@2 (Table 

10). Our model successfully predicted 65.9% of the 

majority labels (i.e., major activities), and our activity 

recognition results show that 90.1% match one of the top 

two HL-ADLs. 

Three issues can explain the topic modeling-based 

approach’s low recognition accuracy. First, only signal 

features were used; local interactions between sensors 

were ignored. Secondly, this model’s “bag of gestures” 

assumption failed to capture the temporal dependencies. 

Third, in real life, ADLs are often interwoven. It is 

difficult to guarantee that the trained activity segment 

only belongs to one “topic,” resulting in a biased 

parameter estimation. As a result, differences among 

extracted topics are minor (details can be found in 

Appendix D, Table D8), resulting in ambiguous pattern 

recognition and low ADLR performance (Acc@1 = 

31.1% and Acc@2 = 46.6%). In addition, extracted topics 

rely on manual interpretation, which can be ad hoc and 

laborious, reducing the model’s usability in real-life 

scenarios. The SAE-based approach extracted the general 

data representation with local and global dependencies, 

resulting in more accurate ADLR than the topic 

modeling-based model with statistical significance (p-

value = 0.04 for Acc@1 and p-value = 0.03 for Acc@2). 

However, without ADL decomposition and meaningful 

dependency extraction (e.g., cross-sensor axial 

dependency), SAE has lower ADLR accuracy, and the 

extracted data representations were not interpretable. 

These results indicate that decomposing ADLs 

hierarchically and extracting salient dependencies at 

different ADL levels with carefully designed deep 

learning models help to accurately recognize HL-ADLs.  

An End-to-End Case Study: Sandwich Time 
and Clean Up Activities 

We illustrate the proof of concept and proof of value of our 

framework with an end-to-end case study. Since features 

extracted by the SAE-based approach were not interpretable, 

we compared our framework against the topic modeling-

based approach. Figure 7 shows an end-to-end ADLR case 

from OPPO-HL based on our framework. Three object 

motion sensors attached to a fridge door, a cup, and a 

dishwasher were selected for demonstration. The 

human/fridge door sensor data segment shown at the top of 

Figure 7 shows that the subject walked to the fridge, opened 

the fridge (red box 1), closed the fridge (red box 2), and 

walked away. The fridge door shows an acceleration and 

deceleration pattern along the negative x direction. In red 

box 2, the fridge door shows another acceleration and 

deceleration pattern along the positive x direction. The 

motion sensor recorded a shock when the fridge door 

closed. The overall ADLR process is explained below. 

In Phase 1, I-CNN processed all data segments from eight 

human-object pairs and generated interaction sequences for 

Phase 2. I-CNN extracted pull interactions (𝑝 = 0.88) 

around red box 1 and push interactions (𝑝 = 0.97) around 

red box 2.  
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Table 9. Activity Recognition Performance of S2S_GRU vs. S2S_LSTM & HMM 

 S2S_GRU S2S_LSTM HMM 

ABLD 0.44 0.57* 3.23*** 

Accuracy 79.6% 73.0%* 34.4%*** 

Note: *p-value < 0.05, ***p-value < 0.001 

Table 10. End-to-End ADLR Accuracy Scores of Experiment Models 

 Hierarchical ADLR SAE + SVM Signal Features + NB + LDA (5 Topics) 

Acc@1 65.9% 42.3%*** 31.1%*** 

Acc@2 90.1% 59.5%*** 46.6%*** 

Note: ***p-value < 0.001 

 
Figure 7. An End-to-End ADL Recognition Case Based on Our Framework 

Note: “N/I” stands for “no interaction.” +: 1 G (earth gravity) = 1,000 mG. 
 

Interaction labels extracted from each object sensor 

within one second were aggregated to a gesture. For 

gesture #71, the pull interaction had the highest 

probability of non-N/I interactions. The model then 

assigned the object information, “fridge door,” to the pull 

interaction and labeled gesture #71 with the “open fridge” 

gesture. In Phase 3, S2S_GRU captured temporal 

dependencies among gesture sequences and assigned HL-

ADL labels to each of the 300 recognized gestures. In 

Figure 7, gestures before #137 were labeled as “sandwich 

time.” The remainder were labeled as “clean up.” The 

ground truth HL-ADL labels were “sandwich time” for 

#1-#137, “relaxing” for #138-#164, and “clean up” for 

#165-#300. The top two activities in this case were 

“sandwich time” (n = 137) and “Clean up” (n = 135). Our 

framework mislabeled #138-#145 as “Clean up,” leading 

to a wrong majority activity (“Clean up” n = 163). Thus, 

the Acc@1 score was 0, and Acc@2 score was 1. 
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However, when evaluated on sequence quality as in 

Experiment 3, our framework accurately labeled 97.3% of 

the sequences, and the BLD score was 1.  

The topic modeling-based method successfully extracted 

gesture #71 using naive Bayes but misclassified gesture 

#82 as “close fridge” because of irregular high 

accelerations. LDA’s “bag of gestures” strategy ignored 

temporal dependencies and wrongly assigned two topics 

for the entire segment: “Early morning” with a 0.232 

likelihood and “clean up” with a 0.148 likelihood, 

resulting in zero accuracy in both TOP-1 and TOP-2. This 

comparison demonstrated that our hierarchical ADLR 

framework better leverages dependencies on different 

ADL levels than the topic-modeling-based approach, 

enabling accurate HL-ADL recognition. In addition, 

intermediate results produced by our proposed framework 

(e.g., interaction labels, gesture sequences, and so on) 

provide more information for assessing the label 

sequence’s quality. These intermediate results were 

interpretable, allowing manual verification and further 

analysis (e.g., object usage pattern analysis). 

Discussion: Contributions to the IS 
Knowledge Base and Practical 
Implications  

Ensuring healthy and safe independent living for senior 

citizens is a growing societal concern. For this research, 

we carefully adhered to the guidelines prescribed by the 

computational design science paradigm to create a novel 

hierarchical ADLR framework suitable for advanced 

predictive health analytics for senior care. Through the 

process of searching through a possible solution space, 

designing the ADLR framework, and rigorously 

evaluating the framework and its constituent components, 

we make several key knowledge contributions to the IS 

knowledge base. The following subsections discuss these 

contributions and their practical implications.  

Contributions to the IS Knowledge Base 

IS scholars have posited that novel IT artifacts should 

contribute prescriptive knowledge back to the IS 

knowledge base to guide the development of future artifacts 

(Nunamaker et al. 1990; Hevner et al. 2004; Gregor and 

Hevner 2013). Knowledge contributions for computational 

IT artifacts can include a situated implementation of a 

model or methods in a selected application environment 

and/or design principles generalizable to domains with 

similar characteristics (Rai 2017). In this study, the end-to-

end ADLR framework is a situated implementation for 

comprehensively identifying ADLs at varying levels of 

granularity. Beyond its direct ADLR application, this 

framework’s use of multiple sensor types, a novel 2D 

interaction kernel, and carefully designed behavior 

decomposition follows three general design principles: 

1. Capturing multiple motion sensor types (e.g., wearable 

and object) for predictive mobile analytics tasks 

2. Capturing multiple types of data dependencies (e.g., 

cross-sensor-axial) to create a comprehensive 

representation of motion sensor signals 

3. Decomposing human behaviors into interpretable 

intermediate features 

These principles can offer scholars valuable references 

when searching through a solution space to design novel 

artifacts for selected research inquiries pertaining to 

cybersecurity, healthcare, and mobile analytics. Table 11 

summarizes the framework component each design 

principle was drawn from, a brief description, the broad 

body of IS literature to which each principle can offer 

value, and selected promising classes of research inquiry. 

We then further elaborate on how these design principles 

can offer value to each listed body of IS literature.  

Cybersecurity. The widespread and rapid proliferation of 

complex IS has introduced unprecedented benefits to 

modern society. Unfortunately, these systems are often 

targeted by malicious cybercriminals for espionage, 

cyberwarfare, and financial gain. Social engineering is a 

common method by which hackers circumvent security 

controls and breach selected technologies. Physical social 

engineering can have significant ramifications to the core 

infrastructure of selected IS facilities along various 

categories (e.g., phishing, phone spoofing). Common 

security controls to detect deceptive and illicit behavior use 

a sensor (Nunamaker et al. 2017; Pentland et al. 2017).  

However, many attackers commonly employ multiple 

countermeasures (e.g., disguises, fake badges, etc.) to 

avoid detection. Design Principle 1 offers scholars an 

operational principle for simultaneously deploying 

multiple sensor types (e.g., badge swipe, motion sensor 

triggers, etc.). Such an approach can result in a layered, 

defense-in-depth approach to detect and mitigate physical 

social engineering attacks (e.g., unauthorized access, 

human behavior logging, etc.). 
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Table 11. Design Principles Followed by ADLR Framework for Selected Bodies and Classes of IS 
Research Inquiry  

ADLR Framework 
Component 

General Design Principle Relevant Body of IS 
Literature 

Potential Class of 
Research Inquiry  

Data collection (e.g., 
wearable and object 
sensors) 

Using multiple sensor types Cybersecurity • Detecting physical 
social engineering 
attacks 

• Deception detection 

2D Interaction Kernel Capturing multiple types of data 
dependencies 

Healthcare • Exploiting multichannel 
data from EEG/ECG* 
for seizure or 
arrhythmia detection 

ADL Decomposition Decomposing human behaviors into 
interpretable intermediate features  

Mobile analytics • Driver behavior profiling 

• Mobile phone addiction 

Note: EEG = electroencephalogram; ECG = Electrocardiogram  

 

Healthcare. Mobile sensing technologies deployed in 

numerous Internet of Things (IoT) devices (e.g., iPhone, 

Apple Watch) are increasingly being equipped with 

advanced capabilities. As a result, such devices offer 

significant promise in creating always-on, reliable, remote, 

fine-grained, and high-quality precision healthcare for 

critical health applications (e.g., ADLR, fall risk 

assessment). However, unlike traditional healthcare data 

sources (e.g., EHR), these devices often generate high 

volumes of untraditional data with rapid velocity. 

Consequently, novel approaches to extract salient 

representations for subsequent analytics is critical to 

executing better-informed, personalized healthcare 

decision-making. Design Principle 2 offers a mechanism to 

automatically extract representations from temporally 

aligned multichannel data. We developed a 2D Interaction 

Kernel for CNNs to capture the interaction patterns 

between different sensors types (wearable and object 

motion sensors). By extracting the human-object 

interactions, our ADLR framework can recognize ADLs at 

all levels more accurately than state-of-the-art models.  

As an IT artifact for advanced mobile home care support, 

our approach can help practitioners understand the 

hierarchical and sequential sensor patterns for other 

sensor modalities such as ECG and EEG, where 

multichannel signals jointly capture heart or brain 

activities and abnormal signal patterns constitute complex 

symptoms (e.g., seizure, arrhythmia).  

Mobile analytics. The advent of Web 3.0 (mobile, sensor-

based, Internet of Things) era has enabled novel approaches 

to collect granular and timely data and consistently observe 

and assess human behavior (Chen et al. 2012). In order to 

harness the value of data volume and granularity, a 

multilevel analysis should be conducted. Design Principle 

3 offers scholars a mechanism to (1) systematically extract 

interpretable intermediate results for short behavioral 

patterns, and (2) assess global behavior profiles based on 

local patterns. For example, a driver’s driving behavior can 

be decomposed to high-level (e.g., driving profile), mid-

level (e.g., car handling, speed control, traffic planning), 

and low-level (e.g., braking patterns, steering patterns, 

turning patterns, lane change patterns). GPS location 

information and vehicle electronic control unit recordings 

can be leveraged to effectively model and profile driving 

behavior. Analytical models can be selected based on the 

characteristics of a particular level (e.g., CNN for braking 

pattern, ensemble learning for high-level profiling). 

Similarly, decomposition can help understand, model, 

extract, and assess mobile phone usage for potential 

addiction prevention and intervention. 

Practical Implications 

Our case study helped demonstrate the proof of concept of 

our framework. Our model not only recognizes ADLs more 

accurately but also provides interpretable intermediate 

results. We discuss the practical value, utility, and impact 

on targeted and relevant stakeholders of interest, as 

required by the computational design science paradigm 

(Rai 2017). Our framework benefits three categories of 

stakeholders: health professionals, caregivers, and senior 

citizens and their families. We describe each in turn. 
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Health professionals. Motion sensors provide timely, 

reliable, and granular information compared to tasks 

performed during clinical visits. However, sensor signals 

are not intuitively interpretable without signal processing 

expertise. Our framework automatically extracts 

interpretable results (e.g., human-object interactions, 

gestures, and activities) from raw sensor data. Health 

professionals can leverage these results at any level to 

augment their decision-making based on their needs. For 

example, professionals can test the upper-limb function (or 

examine Parkinson’s disease progression) if they recognize 

deteriorating patterns (e.g., tremors) during an interaction. 

Erratic or inconsistent pillbox-related gestures can suggest 

medical nonadherence. Professionals might infer cognitive 

decline when unfinished activities or night wandering are 

observed with increasing frequency. 

Caregivers. Home care providers typically monitor care 

receivers’ dietary activities, medication adherence, medical 

instruction compliance, and safe independent living onsite. 

However, these manual, scheduled visits cannot guarantee 

the timely identification of abnormal behavior patterns. The 

ADL sequence information provided by our framework can 

help identify anomalies that may notify caregivers to 

provide timely intervention. For example, irregular 

medication activities may indicate poor medication 

compliance (Conn et al. 2015). Information extracted from 

a care receiver’s mobile activity patterns could help 

caregivers develop personalized care plans. 

Senior citizens and their families. Our framework 

provides accurate and reliable ADLR for home activity 

monitoring. Disclosing the monitored ADL performance to 

caregivers and health professionals enables the timely 

detection of physical or cognitive impairment and early 

intervention. This further improves senior citizens’ quality 

of life and reduces families’ excessive financial loss caused 

by the onset of preventable conditions. Our framework can 

be integrated into smart home environments, online 

monitoring portals, and notification/reporting services to 

help relieve family members’ concerns about the health and 

safety conditions of their loved ones. 

Conclusion and Future Directions 

Ensuring the health and safety of senior citizens living alone 

is a growing societal concern. Monitoring their Activity of 

Daily Living (ADL) performance with motion sensors has 

emerged as a novel approach to collect timely data for 

diagnosis and care. However, prevailing ADL recognition 

methods often fail to identify how senior citizens interact 

with the environment and capture insufficient information to 

accurately model ADLs level by level, preventing health 

progression monitoring at varying ADL granularities. These 

limitations have motivated IS scholars to search for and 

design alternative ADLR models. 

In this study, we adopted the computational design science 

paradigm to develop a novel deep learning-based, 

hierarchical, multiphase ADLR framework to address these 

issues. Our framework makes three key contributions. First, 

it simultaneously leverages human and object motion-sensor 

data to capture more motion clues on how humans interact 

with objects during ADLs, enabling end-to-end ADLR. 

Second, a novel 2D interaction CNN is designed to 

automatically extract cross-sensor axial dependencies. This 

helps capture salient motion features that are missed by 

extant ADLR models and enables accurate ADLR at all 

levels. Finally, the framework provides interpretable 

intermediate results for all ADL levels, which could help 

healthcare professionals obtain indicators of a patient’s 

physical (e.g., the ability to perform a certain interaction or 

gesture) and cognitive conditions (e.g., the ability to plan for 

complex HL-ADL). We rigorously evaluated the framework 

and its components against prevailing feature-engineering 

and deep learning-based ADLR models and validated them 

on selected real-life datasets. We further demonstrated the 

practical value of the framework with an end-to-end case 

study. Apart from the significant practical implications, our 

ADLR framework follows three design principles that could 

be implemented in future health, cybersecurity, and mobile 

analytics applications. 

This work has several natural extensions. First, future work 

could monitor longer activity patterns (e.g., weeks, months, 

or years), associate changes in ADL patterns with disease 

progression, and identify behavioral anomalies. Such 

research would have strong healthcare relevance and greatly 

interest therapists and caregivers. Second, fusing motion 

sensor data with other sensor types (e.g., biophysical) could 

help construct more comprehensive ADL signatures. Third, 

individuals may have different behavioral habits when 

interacting with objects. Using human-object interaction as a 

signature to recognize an ADL performer would be an 

intriguing option for multiresident assisted living facilities. 

Finally, this sensor-interaction-based framework could be 

generalized to recognize patterns from other sensor networks 

whose signals may interact—for example, recognizing heart 

failure or seizures from ECG and EEG data. Each of these 

research avenues could potentially provide more fine-

grained activity and health profiles to ensure the health and 

safety of senior citizens living independently. 



Zhu et al. / A Deep Learning Approach for Recognizing Activity of Daily Living (ADL) for Senior Care  

 

880 MIS Quarterly Vol. 45 No. 2 / June 2021 

 

References 

 Adipat, B., Zhang, D., and Zhou, L. 2011. “The Effects of Tree-

View Based Presentation Adaption on Mobile Web 

Browsing,” MIS Quarterly (35:1), pp. 99-122.  

Adjerid, I., Adler-Milstein, J., and Angst, C. 2018. “Reducing 

Medicare Spending Through Electronic Health Information 

Exchange: The Role of Incentives and Exchange Maturity,” 

Information Systems Research 29 (2) 341-361  

Almaslukh, B., Jalal, A., and Abdelmonim, A. 2017. “An 

Effective Deep Autoencoder Approach for Online 

Smartphone-Based Human Activity Recognition,” 

International Journal of Computer Science and Network 

Security (16:3), 197-205. 

Anderson, C. L., and Agarwal, R. 2011. “The Digitization of 

Healthcare: Boundary Risks, Emotion, and Consumer 

Willingness to Disclose Personal Health Information,” 

Information Systems Research (22:3), pp. 469-490.  

Angst, C. M., Block, E. S., D’Arcy, J., and Kelley, K. 2017. 

“When Do IT Security Investments Matter? Accounting for 

the Influence of Institutional Factors in the Context of 

Healthcare Data Breaches,” MIS Quarterly (41:3), pp. 893-

916.  

Atallah, L., Lo, B., King, R., and Yang, G.-Z. 2011. “Sensor 

Positioning for Activity Recognition Using Wearable 

Accelerometers,” IEEE Transactions on Biomedical 

Circuits and Systems (5:4), pp. 320-329.  

Avilés-Cruz, C., Ferreyra-Ramírez, A., Zúñiga-López, A., and 

Villegas-Cortéz, J. 2019. “Coarse-Fine Convolutional 

Deep-Learning Strategy for Human Activity Recognition,” 

Sensors (19:7), Article 1556. 

Ayabakan, S., Bardhan, I., Zheng, Z. (Eric), and Kirksey, K. 

2017. “The Impact of Health Information Sharing on 

Duplicate Testing,” MIS Quarterly (41:4), pp. 1083-1103.  

Bao, L., and Intille, S. S. 2004. “Activity Recognition from 

User-Annotated Acceleration Data, in Proceedings of the 

International Conference on Pervasive Computing, Vienna, 

Austria. 

Bardhan, I., Oh, J. (Cath), Zheng, Z. (Eric), and Kirksey, K. 

2015. “Predictive Analytics for Readmission of Patients 

with Congestive Heart Failure,” Information Systems 

Research (26:1), pp. 19-39. 

Blei, D. M., Ng, A. Y., and Jordan, M. I. 2003. “Latent Dirichlet 

Allocation,” Journal of Machine Learning Research (3), pp. 

993-1022.  

Bravo, J., Cook, D., and Riva, G. 2016. “Ambient Intelligence 

for Health Environments,” Journal of Biomedical 

Informatics (64), pp. 207-210.  

Bryant, M. S., Rintala, D. H., Hou, J.-G., and Protas, E. J. 2015. 

“Relationship of Falls and Fear of Falling to Activity 

Limitations and Physical Inactivity in Parkinson’s Disease,” 

Journal of Aging and Physical Activity (23:2), pp. 187-193.  

Cao, H., Nguyen, M. N., Phua, C., Krishnaswamy, S., and Li, X. 

2012. “An Integrated Framework for Human Activity 

Classification,” in Proceedings of the 2012 ACM 

Conference on Ubiquitous Computing, pp. 331-340.  

Census Bureau. 2016. “American Community Survey (ACS).” 

United States Census Bureau 

(https://www.census.gov/programs-surveys/acs/data/pums. 

html). 

Census Bureau. 2017. “The Nation’s Older Population Is Still 

Growing” United States Census Bureau  (https://www. 

census.gov/newsroom/press-releases/2017/cb17-100.htm). 

Chen, Y., and Xue, Y. 2015. “A Deep Learning Approach to 

Human Activity Recognition Based on Single 

Accelerometer,” in 2015 IEEE International Conference on 

Systems, Man, and Cybernetics, pp. 1488-1492. 

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., 

Bougares, F., Schwenk, H., and Bengio, Y. 2014. “Learning 

Phrase Representations Using RNN Encoder-Decoder for 

Statistical Machine Translation,” in Proceedings of the 2014 

Conference on Empirical Methods in Natural Language 

Processing, pp. 1724-1734.  

Chollet, F. 2015. “Keras,” GitHub (https://github.com/keras-

team/keras). 

Chowdhury, S. D., Bhattacharya, U., and Parui, S. K. 2013. 

“Online Handwriting Recognition Using Levenshtein 

Distance Metric,” in 2013 12th International Conference on 

Document Analysis and Recognition, IEEE, August, pp. 79-

83. 

Chuang, J., Maimoon, L., Yu, S., Zhu, H., Nybroe, C., Hsiao, 

O., Li, S.-H., Lu, H., and Chen, H. 2015. “SilverLink: Smart 

Home Health Monitoring for Senior Care,” in International 

Conference on Smart Health 2015, pp. 3-14.  

Chung, J., Ozkaynak, M., and Demiris, G. 2017. “Examining 

Daily Activity Routines of Older Adults Using Workflow,” 

Journal of Biomedical Informatics (71), pp. 82-90.  

Conn, V. S., Ruppar, T. M., Chase, J.-A. D., Enriquez, M., and 

Cooper, P. S. 2015. “Interventions to Improve Medication 

Adherence in Hypertensive Patients: Systematic Review 

and Meta-Analysis,” Current Hypertension Reports (17:12), 

Article 94.  

Cremonesi, P., Koren, Y., and Turrin, R. 2010. “Performance of 

Recommender Algorithms on Top-n Recommendation 

Tasks,” in Proceedings of the Fourth ACM Conference on 

Recommender Systems, pp. 39-46. 

Emi, I. A., and Stankovic, J. A. 2015. “SARRIMA: Smart ADL 

Recognizer and Resident Identifier in Multi-Resident 

Accommodations,” in Proceedings of the Conference on 

Wireless Health, Article 4. 

Fan, G. C., Fitriani, and Goh, W.-B. 2011. “Generic Motion 

Gesture Detection Scheme Using Only a Triaxial 

Accelerometer,” in 2011 IEEE 15th International 

Symposium on Consumer Electronics (ISCE), IEEE, pp. 

151-155.  

Forman, G. 2003. “An Extensive Empirical Study of Feature 

Selection Metrics for Text Classification,” Journal of 

Machine Learning Research (3), pp. 1289-1305.  

Foti, D., and Koketsu, J. S. 2013. “Activities of Daily Living,” 

in Pedretti’s Occupational Therapy: Practical Skills for 

Physical Dysfunction, 7th ed, H. McHugh Pendleton and  W. 

Schultz-Krohn (eds.), Amsterdam: Elsevier, pp. 157-232. 

Gong, J., Lach, J., Stankovic, J. A., Rose, K. M., Emi, I. A., 

Specht, J. P., Hoque, E., Fan, D., Dandu, S. R., Dickerson, 

R. F., and Perkhounkova, Y. 2015. “Home Wireless Sensing 

System for Monitoring Nighttime Agitation and 



Zhu et al. / A Deep Learning Approach for Recognizing Activity of Daily Living (ADL) for Senior Care  

 

MIS Quarterly Vol. 45 No. 2 / June 2021 881 

 

Incontinence in Patients with Alzheimer’s Disease,” in 

Proceedings of the Conference on Wireless Health, Article 

5. 

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. 2016. 

Deep Learning, vol. 1, Cambridge, MA: MIT Press. 

Gregor, S., and Hevner, A. R. 2013. “Positioning and Presenting 

Design Science Research for Maximum Impact,” MIS 

Quarterly (37:2), pp. 337-355.  

Haghi, M., Thurow, K., and Stoll, R. 2017. “Wearable Devices 

in Medical Internet of Things: Scientific Research and 

Commercially Available Devices,” Healthcare Informatics 

Research (23:1), pp. 4-15.  

Hammerla, N. Y., Halloran, S., and Ploetz, T. 2016. “Deep, 

Convolutional, and Recurrent Models for Human Activity 

Recognition Using Wearables,” in Proceedings of the 

Twenty-Fifth International Joint Conference on Artificial 

Intelligence, pp. 1533-1540 

Hardy, S. E. 2014. “Consideration of Function & Functional 

Decline,” in Current Diagnosis & Treatment: Geriatrics, 

2nd ed., B. A. Williams, A. Chang, C. Ahalt, H. Chen, R. 

Conant, C. S. Landefeld, C. Ritchie, and M. Yukawa (eds.), 

New York: McGraw-Hill, pp. 3-4. 

Hassan, M. M., Uddin, M. Z., Mohamed, A., and Almogren, A. 

2018. “A Robust Human Activity Recognition System 

Using Smartphone Sensors and Deep Learning,” Future 

Generation Computer Systems (81), pp. 307-313.  

Hevner, A. R., March, S. T., Park, J., and Ram, S. 2004. “Design 

Science in Information Systems Research,” MIS Quarterly 

(28:1), pp. 75-105. 

Huang, Y., Wang, W., and Wang, L. 2015. “Bidirectional 

Recurrent Convolutional Networks for Multi-Frame Super-

Resolution,” in Proceedings of the 28th International 

Conference on Neural Information Processing Systems 

(NIPS), pp. 235-243. 

Huynh, T., Fritz, M., and Schiele, B. 2008. “Discovery of 

Activity Patterns Using Topic Models,” in Proceedings of 

the 10th International Conference on Ubiquitous 

Computing, pp. 10-18 

Ihianle, I. K., Naeem, U., and Tawil, A.-R. 2016. “Recognition 

of Activities of Daily Living from Topic Model,” Procedia 

Computer Science (98), pp. 24-31.  

Jekel, K., Damian, M., Wattmo, C., Hausner, L., Bullock, R., 

Connelly, P. J., Dubois, B., Eriksdotter, M., Ewers, M., 

Graessel, E., Kramberger, M. G., Law, E., Mecocci, P., 

Molinuevo, J. L., Nygård, L., Olde-Rikkert, M. G., 

Orgogozo, J.-M., Pasquier, F., Peres, K., Salmon, E., Sikkes, 

S. A., Sobow, T., Spiegel, R., Tsolaki, M., Winblad, B., and 

Frölich, L. 2015. “Mild Cognitive Impairment and Deficits 

in Instrumental Activities of Daily Living: A Systematic 

Review,” Alzheimer’s Research & Therapy (7:1), Article 

17. 

Kankanhalli, A., Ye, H., and Hai Teo, H. 2015. “Comparing 

Potential and Actual Innovators: An Empirical Study of 

Mobile Data Services Innovation,” MIS Quarterly (39:3), 

pp. 667-682.  

Katz, S. 1983. “Assessing Self-Maintenance: Activities of Daily 

Living, Mobility, and Instrumental Activities of Daily 

Living,” Journal of the American Geriatrics Society (31:12), 

pp. 721-727.  

Kelly, D. 2007. “Methods for Evaluating Interactive 

Information Retrieval Systems with Users,” Foundations 

and Trends® in Information Retrieval (3:1-2), pp. 1-224. 

Kim, J.-H., Hong, G.-S., Kim, B.-G., and Dogra, D. P. 2018. 

“DeepGesture: Deep Learning-Based Gesture Recognition 

Scheme Using Motion Sensors,” Displays (55), pp. 38-45.  

Kuhn, H. W. 1955. “The Hungarian Method for the Assignment 

Problem,” Naval Research Logistics Quarterly (2:1-2), pp. 

83-97.  

Kwon, H. E., So, H., Han, S. P., and Oh, W. 2016. “Excessive 

Dependence on Mobile Social Apps: A Rational Addiction 

Perspective,” Information Systems Research (27:4), pp. 919-

939.  

Kwon, J., and Johnson, M. E. 2014. “Proactive Versus Reactive 

Security Investments in the Healthcare Sector,” MIS 

Quarterly (38:2), pp. 451-471.  

Lebedev, S. 2016. “HMMlearn,” GitHub (https://github.com/ 

hmmlearn/ hmmlearn). 

LeCun, Y., Bengio, Y., and Hinton, G. 2015. “Deep Learning,” 

Nature (521:7553), pp. 436-444.  

Levenshtein, V. I. 1966. “Binary Codes Capable of Correcting 

Deletions, Insertions, and Reversals,” Soviet Physics 

Doklady (10:8), pp. 707-710. 

Li, F., Shirahama, K., Nisar, M., Köping, L., and Grzegorzek, 

M. 2018. “Comparison of Feature Learning Methods for 

Human Activity Recognition Using Wearable Sensors,” 

Sensors (18:3), Article 679. 

Li, X.-B., and Qin, J. 2017. “Anonymizing and Sharing Medical 

Text Records,” Information Systems Research (28:2), pp. 

332-352.  

Lin, Y.-K., Chen, H., Brown, R. A., Li, S.-H., and Yang, H.-J. 

2017. “Healthcare Predictive Analytics For Risk Profiling In 

Chronic Care: A Bayesian Multitask Learning Approach,” 

MIS Quarterly (41:2), pp. 473-495. 

Lipton, Z. C., Berkowitz, J., and Elkan, C. 2015. “A Critical 

Review of Recurrent Neural Networks for Sequence 

Learning” (https://arxiv.org/pdf/1506.00019.pdf). 

Liu, Q., Zhou, Z., Shakya, S. R., Uduthalapally, P., Qiao, M., 

and Sung, A. H. 2018. “Smartphone Sensor-Based Activity 

Recognition by Using Machine Learning and Deep Learning 

Algorithms,” International Journal of Machine Learning 

and Computing (8:2), pp. 121-126.  

Maimoon, L., Chuang, J., Zhu, H., Yu, S., Peng, K.-S., 

Prayakarao, R., Bai, J., Zeng, D., Li, S.-H., Lu, H., and 

Chen, H. 2016. “SilverLink: Developing an International 

Smart and Connected Home Monitoring System for Senior 

Care,” in International Conference on Smart Health 2016, 

pp. 65-77.  

Millman, K. J., and Aivazis, M. 2011. “Python for Scientists and 

Engineers,” Computing in Science & Engineering (13:2), 

pp. 9-12.  

Mukhopadhyay, T., Singh, P., and Kim, S. H. 2011. “Learning 

Curves of Agents with Diverse Skills in Information 

Technology-Enabled Physician Referral Systems,” 

Information Systems Research (22:3), pp. 586-605.  

Murad, A., and Pyun, J.-Y. 2017. “Deep Recurrent Neural 

Networks for Human Activity Recognition,” Sensors 



Zhu et al. / A Deep Learning Approach for Recognizing Activity of Daily Living (ADL) for Senior Care  

 

882 MIS Quarterly Vol. 45 No. 2 / June 2021 

 

(17:11), Article 2556. 

Nunamaker, J. F., Twyman, N. W., Giboney, J. S., and Briggs, 

R. O. 2017. “Creating High-Value Real-World Impact 

through Systematic Programs of Research,” MIS Quarterly 

(41:2), pp. 335-351.  

Nunamaker Jr, J. F., Chen, M., and Purdin, T. D. M. 1990. 

“Systems Development in Information Systems Research,” 

Journal of Management Information Systems (7:3), pp. 89-

106. 

Oborn, E., Barrett, M., and Davidson, E. 2011. “Unity in 

Diversity: Electronic Patient Record Use in Multidisciplinary 

Practice,” Information Systems Research (22:3), pp. 547-

564.  

Ordóñez, F., and Roggen, D. 2016. “Deep Convolutional and 

LSTM Recurrent Neural Networks for Multimodal Wearable 

Activity Recognition,” Sensors (16:12), Article 115.  

Ozdemir, Z., Barron, J., and Bandyopadhyay, S. 2011. “An 

Analysis of the Adoption of Digital Health Records Under 

Switching Costs,” Information Systems Research (22:3), pp. 

491-503.  

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, 

B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., 

Dubourg, V., and others. 2011. “Scikit-Learn: Machine 

Learning in Python,” Journal of Machine Learning Research 

(12), pp. 2825-2830. 

Pentland, S. J., Twyman, N. W., Burgoon, J. K., Nunamaker, J. 

F., and Diller, C. B. R. 2017. “A Video-Based Screening 

System for Automated Risk Assessment Using Nuanced 

Facial Features,” Journal of Management Information 

Systems (34:4), pp. 970-993. 

Pires, I. M., Garcia, N. M., Pombo, N., Flórez-Revuelta, F., 

Spinsante, S., and Teixeira, M. C. 2018. “Identification of 

Activities of Daily Living through Data Fusion on Motion 

and Magnetic Sensors Embedded on Mobile Devices,” 

Pervasive and Mobile Computing (47), pp. 78-93.  

Rai, A. 2017. “Editor’s Comments: Diversity of Design Science 

Research,” MIS Quarterly (41:1), iii-xviii. 

Řehůřek, R., and Sojka, P. 2010. “Software Framework for Topic 

Modelling with Large Corpora,” in Proceedings of the LREC 

2010 Workshop on New Challenges for NLP Frameworks, 

pp. 45-50. 

Reyes-Ortiz, J.-L., Oneto, L., Samà, A., Parra, X., and Anguita, 

D. 2016. “Transition-Aware Human Activity Recognition 

Using Smartphones,” Neurocomputing (171), pp. 754-767.  

Roggen, D., Calatroni, A., Rossi, M., Holleczek, T., Forster, K., 

Troster, G., Lukowicz, P., Bannach, D., Pirkl, G., Ferscha, 

A., Doppler, J., Holzmann, C., Kurz, M., Holl, G., 

Chavarriaga, R., Sagha, H., Bayati, H., Creatura, M., and 

Millan, J. del R. 2010. “Collecting Complex Activity 

Datasets in Highly Rich Networked Sensor Environments,” 

in Proceedings of the 7th International Conference on 

Networked Sensing Systems (INSS), pp. 233-240. 

Safi, K., Mohammed, S., Attal, F., Khalil, M., and Amirat, Y. 

2016. “Recognition of Different Daily Living Activities 

Using Hidden Markov Model Regression,” in Proceedings of 

the 3rd Middle East Conference on Biomedical Engineering 

(MECBME), pp. 16-19. 

Salge, T. O., Kohli, R., and Barrett, M. 2015. “Investing in 

Information Systems: On the Behavioral and Institutional 

Search Mechanisms Underpinning Hospitals’ Is Investment 

Decisions.,” MIS Quarterly (39:1), pp. 61-90.  

Silva, B. M. C., Rodrigues, J. J. P. C., de la Torre Díez, I., López-

Coronado, M., and Saleem, K. 2015. “Mobile-Health: A 

Review of Current State in 2015,” Journal of Biomedical 

Informatics (56), pp. 265-272. 

Singh, I., Varanasi, A., and Williamson, K. 2014. “Assessment 

and Management of Dementia in the General Hospital 

Setting,” Reviews in Clinical Gerontology (24:03), pp. 205-

218.  

Sun, J., Fu, Y., Li, S., He, J., Xu, C., and Tan, L. 2018. 

“Sequential Human Activity Recognition Based on Deep 

Convolutional Network and Extreme Learning Machine 

Using Wearable Sensors,” Journal of Sensors (2018), 

Article 8580959. 

Sutskever, I., Vinyals, O., and Le, Q. V. 2014. “Sequence to 

Sequence Learning with Neural Networks,” in Proceedings 

of the 27th International Conference on Neural Information 

Processing Systems, pp. 3104-3112. 

Venkatesh, V., Rai, A., Sykes, T. A., and Aljafari, R. 2016. 

“Combating Infant Mortality in Rural India: Evidence from 

a Field Study of EHealth Kiosk Implementations,” MIS 

Quarterly (40:2), pp. 353-380.  

Wang, J., Chen, Y., Hao, S., Peng, X., and Hu, L. 2019. “Deep 

Learning for Sensor-Based Activity Recognition: A 

Survey,” Pattern Recognition Letters (119), pp. 3-11.  

White, R. J. 2018. “Using Topic Models to Detect Behaviour 

Patterns for Healthcare Monitoring,” unpublished doctoral 

dissertation, University of Reading, Reading, UK. 

Whitehead, P. J., Worthington, E. J., Parry, R. H., Walker, M. 

F., and Drummond, A. E. R. 2015. “Interventions to Reduce 

Dependency in Personal Activities of Daily Living in 

Community Dwelling Adults Who Use Homecare Services: 

A Systematic Review,” Clinical Rehabilitation (29:11), pp. 

1064-1076.  

World Health Organization. 2016. “Life Expectancy Increased by 

5 Years since 2000, but Health Inequalities Persist.” (http:// 

www.who.int/en/news-room/detail/19-05-2016-life-expectancy-

increased-by-5-years-since-2000-but-health-inequalities-

persist). 

Yang, J. B., Nguyen, M. N., San, P. P., Li, X. L., and Shonali, K. 

2015. “Deep Convolutional Neural Networks on 

Multichannel Time Series for Human Activity Recognition,” 

in Proceedings of the 24th International Conference on 

Artificial Intelligence (IJCAI), pp. 3995-4001. 

Ye, H. (Jonathan), and Kankanhalli, A. 2018. “User Service 

Innovation on Mobile Phone Platforms: Investigating Impacts 

of Lead Userness, Toolkit Support, and Design Autonomy,” 

MIS Quarterly (42:1), pp. 165-187. 

Yu, S., Chen, H., and Brown, R. A. 2017. “Hidden Markov 

Model-Based Fall Detection with Motion Sensor Orientation 

Calibration: A Case for Real-Life Home Monitoring,” IEEE 

Journal of Biomedical and Health Informatics (22:6), pp. 

1847-1853. 

Zeng, M., Nguyen, L. T., Yu, B., Mengshoel, O. J., Zhu, J., Wu, 

P., and Zhang, J. 2014. “Convolutional Neural Networks for 

Human Activity Recognition Using Mobile Sensors,” in 



Zhu et al. / A Deep Learning Approach for Recognizing Activity of Daily Living (ADL) for Senior Care  

 

MIS Quarterly Vol. 45 No. 2 / June 2021 883 

 

Proceedings of the 6th International Conference on Mobile 

Computing, Applications and Services, pp. 197-205.  

Zhu, H., Chen, H., and Brown, R. 2018. “A Sequence-to-

Sequence Model-Based Deep Learning Approach for 

Recognizing Activity of Daily Living for Senior Care,” 

Journal of Biomedical Informatics (84), pp. 148-158.  

About the Authors 

Hongyi Zhu is an assistant professor in the Department of 

Information Systems and Cyber Security at the College of 

Business at the University of Texas at San Antonio. He received 

his Ph.D. in management information systems from the University 

of Arizona in December 2019. He has primarily worked on 

designing advanced mobile analytics for smart home care. His 

research focuses on the recognition, extraction, and analysis of 

subjects’ in-house behaviors (e.g., activities, object usage) from 

raw mobile sensors data. His work has been published or accepted 

in journals such as Journal of Biomedical Informatics, IEEE 

Intelligent Systems, Journal of Management Information Systems, 

and others. He has contributed to a variety of projects supported 

by the National Science Foundation. 

Sagar Samtani is currently an assistant professor and Grant 

Thornton Scholar in the Department of Operations and Decision 

Technologies at the Kelley School of Business at Indiana 

University. Samtani graduated with his Ph.D. in Management 

Information Systems from the University of Arizona’s Artificial 

Intelligence Lab in May 2018 where he served as a Scholarship-

for-Service fellow from 2014-2017. Samtani’s AI for 

cybersecurity and dark web analytics research initiatives have 

garnered nearly $1.5M (in PI and co-PI roles) in prestigious 

funding from the National Science Foundation CISE Research 

Initiation Initiative and Cybersecurity Innovation for Cyber 

Infrastructure programs. His research has been published in 

journals such as Journal of Management Information Systems 

and IEEE Intelligent Systems. His research has also received 

significant media coverage and citations from outlets such as the 

Miami Herald, Fox News, and Science. He is a member of the 

IEEE, ACM, AIS, and INFORMS. 

Randall A. Brown received his medical degree from Rush 

Medical College in Chicago and completed residency training in 

internal medicine at the University of Michigan in Ann Arbor, 

MI. He has an MBA from the University of Arizona, Eller 

College of Management. He has over 25 years of clinical 

medical experience teaching and practicing medicine in tertiary 

academic medical centers. He was an assistant professor of 

medicine from 1989 to 2003 with the Henry Ford Health System 

in Detroit, MI. At the University of Arizona College of 

Medicine, he was an assistant professor of medicine, clinical 

scholar from 2005 to 2018 and a research consultant with the 

Artificial Intelligence Laboratory of the Eller College of 

Management, in the MIS Department, from 2010 to 2019. He is 

currently working on the Virtual College of Pharmacy Project 

with Department of Pharmacy of the University of Arizona. 

Hsinchun Chen is Regents Professor and Thomas R. Brown 

Chair in Management and Technology in the Management 

Information Systems Department at the Eller College of 

Management, University of Arizona. He received his Ph.D. in 

Information Systems from New York University. He is the 

author/editor of 20 books, 300 SCI journal articles, and 200 

refereed conference articles covering digital library, 

data/text/web mining, business analytics, security informatics, 

and health informatics. He served as the lead program director 

of the Smart and Connected Program at the National Science 

Foundation (NSF) for 2014-2015, a multi-year multi-agency 

U.S. health IT research program. He founded the Artificial 

Intelligence Lab at The University of Arizona in 1989, which 

has received $50M+ research funding from the NSF, National 

Institutes of Health, National Library of Medicine, Department 

of Defense, Department of Justice, Central Intelligence Agency, 

Department of Homeland Security, and other agencies (100+ 

grants, 50+ from NSF). He is a Fellow of ACM, IEEE, and 

AAAS.



Zhu et al. / A Deep Learning Approach for Recognizing Activity of Daily Living (ADL) for Senior Care  

 

884 MIS Quarterly Vol. 45 No. 2 / June 2021 

 

Appendix A  

Model Specifications  

Interaction-Based Convolutional Neural Network (I-CNN) 

Figure A1 depicts our I-CNN model. The 2D Interaction Kernel is installed on the first convolutional layer, transforming input data 

segments into interaction representations. For a faster training/testing speed, we implemented two convolutional layers parsimoniously 

to extract the temporal local-dependency within the representations. Both convolutional layers are activated with hyperbolic tangent 

function (𝑡𝑎𝑛ℎ). Pooling layers are implemented after convolutional layers to condense the representations. Two fully connected 

(dense) layers and a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function classify the representation into five interaction categories. Unlike past studies (Yang et al. 

2015), we implemented dropout operations on both pooling and fully connected layers to avoid overfitting. The dropped feature maps 

and nodes are colored black in Figure A1. I-CNN model parameters are summarized in Table A1. 

 
Figure A1. The Proposed I-CNN Architecture for Interaction Extraction 

 

Table A1. I-CNN Model Specifications 

Layer Kernel Size Stride Output Shape Param #    

input_1   (None, 3, 240, 1) 0 

Input_2   (None, 3, 240, 1) 0 

inter_conv2d (2, 13) (1, 1) (None, 9, 228, 10) 270 

max_pooling2d (1, 19)  (None, 9, 12, 10) 0 

dropout_1 (rate=0.125)   (None, 9, 12, 10) 0 

conv1d (1, 7) (1, 1) (None, 9, 6, 10) 710 

max_pooling1d (3, 3)  (None, 3, 2, 10) 0 

dropout_2 (rate=0.125)   (None, 3, 2, 10) 0 

flatten   (None, 60) 0 

dense_1 (sigmoid)   (None, 40) 2,440 

dropout_3 (rate=0.25)   (None, 40) 0 

dense_2 (softmax)   (None, 5) 205 

Total params: 3,625; trainable params: 3,625 
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GRU-Based Seq2Seq HL-ADL Recognition Model 

We adopt Zhu et al.’s (2018) S2S_GRU design for our HL-ADL recognition phase (Figure 4). Model parameters are summarized in 

Table A2.  

Table A2. S2S_GRU Model Specifications 

Layer Output Shape Param #    

gru_1 (None, 40) 6,960 

dense_1 (None, 40) 1,640 

repeat_vector (None, 300, 40) 0 

gru_2 (None, 300, 40) 9,720 

time_distributed (None, 300, 5) 205 

Total params: 18,525; trainable params: 18,525 
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Appendix B  

OPPO-HL Statistics  

OPPO-HL contains 1,135 samples with interweaving HL-ADLs. Table B1 shows the distribution of the segments with N distinct HL-

ADL labels. The majority (96.74%) of the dataset contains two to four HL-ADL activities in a segment. Table B2 then summarizes the 

average proportion (length) of the top-N HL-ADL labels in each segment. From this table, we observe that each segment has on average 

two major HL-ADLs, taking up 90.11% of the segment’s time span. Tables B3 and B4 further demonstrate detailed distributions of 

these labels. Table B5 sets up baseline Acc@2 scores when assigning the same label to all segments. 

Table B1. Distribution of Segments with N Distinct HL-ADL Labels 

N 1 2 3 4 5 

Count (%) 27 (2.38%) 205 (18.06%) 606 (53.39%) 287 (25.29%) 10 (0.88%) 

 
Table B2. Average Proportion of Top-N HL-ADL Labels 

Top-N Labels 1 2 3 4 5 

Proportion 61.19% 90.11% 98.82% 99.99% 100.00% 

 
Table B3. A Label with the Highest & Second-highest Count 

 Relaxing Coffee Time Early Morning Cleanup Sandwich Time 

Highest 15.24% 11.89% 28.90% 7.41% 36.56% 

Second highest 23.79% 28.01% 12.07% 23.00% 13.13% 

 
Table B4. Label Distribution of the TOP-2 Label Set 

Count Relaxing Coffee Time Early Morning Cleanup Sandwich Time 

Relaxing 3 (0.26%)     

Coffee Time 2 (0.18%) 0    

Early Morning 232 (20.44%) 219 (19.30%) 0   

Cleanup 134 (11.81%) 0 5 (0.44%) 0  

Sandwich Time 69 (6.08%) 232 (20.44%) 9 (0.79%) 206 (18.15%) 24 (2.11%) 

 
Table B5. Acc@2 Scores When Assigning One Label to All Segments 

 Relaxing Coffee Time Early Morning Cleanup Sandwich Time 

Acc@2 38.77% 39.91% 40.97% 30.40% 47.58% 
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Appendix C  

Recognizing Gestures by Incorporating Historical Information 

In the main text, we noted that certain gestures may closely follow each other in practice (e.g., “close the fridge” shortly after “open 

the fridge”). These co-occurring and correlated gestures can form local (i.e., short-term) patterns that contribute to gesture recognition 

or prediction (Chen et al. 2012). To this end, we examine our OPPO-ML dataset for potential gesture co-occurrence.  

According to the ADLR hierarchy summarized in Table 1, a gesture typically lasts for less than 15 seconds. Therefore, it is likely to 

identify at least one gesture in the 15-second time window before a data segment. Gesture labels within 15 seconds prior to each OPPO-

ML segment are generated using a one-second stride length sliding window strategy, resulting in a 15-label sequence. A majority vote 

strategy is used to summarize a gesture label for each sliding window. Since the time between two potentially correlated gestures can 

vary, we adopt a “bag-of-gestures” approach to model and record the co-occurrence relationship. If a gesture 𝐺𝑗  occurred at least once 

within the 15-second window prior to an OPPO-ML segment whose gesture label is 𝐺𝑖  (𝑖 ≠ 𝑗), we increment the co-occurrence count 

𝐺𝑖𝑗 by one. After all the co-occurrences are recorded for OPPO-ML, we calculate the probability that 𝐺𝑗  occurred before 𝐺𝑖 within the 

15-second time window with  

𝑝𝑖𝑗 =
𝐺𝑖𝑗

# 𝐺𝑖  in OPPO-ML
. 

We present the co-occurred gestures within 15 seconds prior to the current gesture with the probability in Table C1.  

Table C1. Gestures Co-occurrence Probability within 15 Seconds+  

Current  
Gesture* 

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 

G1 -- 0.03 0.03 0.02 0.01 0.02 0.04 0.14 0.33 0.49 0.55 0.62 0.70 0.71 0.01 0.02 

G2 0.66 -- 0.02 0.09 0.03 0.04 0.01 0.05 0.07 0.17 0.40 0.50 0.54 0.66 0.01 0.01 

G3 0.75 0.72 -- 0.01 0.04 0.04 0.01 0.03 0.04 0.04 0.04 0.08 0.23 0.50 0.02 0.02 

G4 0.55 0.72 0.66 -- 0.03 0.04 0.01 0.01 0.01 0.01 0.02 0.03 0.08 0.13 0.02 0.02 

G5 0.00 0.01 0.02 0.04 -- 0.07 0.03 0.04 0.02 0.05 0.04 0.05 0.04 0.04 0.41 0.42 

G6 0.00 0.01 0.02 0.02 0.91 -- 0.04 0.05 0.01 0.01 0.01 0.01 0.02 0.02 0.38 0.39 

G7 0.00 0.01 0.00 0.00 0.65 0.67 -- 0.05 0.05 0.06 0.05 0.05 0.08 0.09 0.45 0.47 

G8 0.00 0.01 0.00 0.00 0.62 0.63 0.81 -- 0.03 0.05 0.05 0.05 0.05 0.05 0.31 0.41 

G9 0.05 0.05 0.02 0.06 0.54 0.64 0.66 0.65 -- 0.02 0.04 0.05 0.07 0.08 0.13 0.27 

G10 0.03 0.02 0.02 0.05 0.49 0.56 0.65 0.65 0.98 -- 0.04 0.04 0.06 0.07 0.07 0.10 

G11 0.03 0.02 0.03 0.06 0.33 0.52 0.57 0.68 0.80 0.82 -- 0.01 0.06 0.07 0.07 0.11 

G12 0.02 0.00 0.02 0.05 0.17 0.42 0.53 0.60 0.80 0.81 0.96 -- 0.05 0.05 0.03 0.08 

G13 0.02 0.07 0.02 0.05 0.12 0.29 0.44 0.48 0.69 0.71 0.70 0.72 -- 0.00 0.02 0.04 

G14 0.02 0.05 0.02 0.04 0.09 0.13 0.28 0.47 0.57 0.71 0.71 0.70 0.96 -- 0.02 0.02 

G15 0.00 0.00 0.04 0.11 0.03 0.05 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.01 -- 0.42 

G16 0.00 0.00 0.00 0.04 0.02 0.03 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.93 -- 

Note: + The first author can provide the table with other time windows upon request. * G1 = Open Door 1, G2 = Close Door 1, G3 = Open 
Door 2, G4 = Close Door 2, G5 = Open Fridge, G6 = Close Fridge, G7 = Open Dishwasher, G8 = Close Dishwasher, G9 = Open Drawer 
1, G10 = Close Drawer 1, G11 = Open Drawer 2, G12 = Close Drawer 2, G13 = Open Drawer 3, G14 = Close Drawer 3, G15 = Drink from 
Cup, G16 = Put away Cup.  

Several co-occurrence patterns can be identified in Table C1. For example, the “put away cup” gesture is likely to follow the “drink 

from cup” gesture in the next 15 seconds. Therefore, current gestures may be successfully recognized based on a combination of current 
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lower-level information (i.e., current extracted interactions demonstrated in Experiment 2) and previous mid-level information (i.e., 

recent gestures). We design and conduct an additional experiment to evaluate the performance gain by including recent gestures as 

features for gesture recognition. Like Experiment 2, we compare the gesture recognition performance between our proposed I-CNN-

GR model and four sets of benchmarks that incorporate k most recent gestures (i.e., historical information) as features. Table C2 

summarizes the experiment design. 

Table C2. Experiment Design: I-CNN-GR vs. Four Benchmark Sets  

Benchmark Set Models* Testbed 
Evaluation 
Metrics 

Prior Study 

Interaction + k most recent 
gestures 

I-CNN-SVM-k 

OPPO-ML  
Precision, 
recall, F1, 
averaged F1 

Chen and Xue 2015 
Cao et al. 2012 
Bao and Intille 2004 

I-CNN-DT-k 

I-CNN-NN-k 

Data representation + k most 
recent gestures 

CNN-1D-k 

CNN-2D-k 

Signal Features + k most recent 
gestures 

SVM-k + Signal 
Features  

DT-k + Signal 
Features 

k most recent gestures 
SVM-k 

DT-k 

Note: * Model specifications and parameters are detailed in Appendix D. 

The first benchmark set consists of I-CNN-GR variations that use classifiers (DT, SVM, and a fully connected neural network (NN)) 

instead of heuristics to incorporate historical information (i.e., the k most recent gestures). This benchmark set classifies OPPO-ML 

segments based on the interactions extracted by I-CNN and the recent gestures. We extended CNN-1D and CNN-2D, the two deep 

learning benchmarks we used in Experiment 2, to form our second benchmark set. For both models, we integrated the k most recent 

gestures into the input to the last dense layer. This enables both models to recognize gestures based on the data representation (temporal 

or cross-axial dependencies) and recent gestures. For the third benchmark set, we incorporated the k most recent gestures to complement 

the signal features used by classical machine learning models (i.e., SVM and DT). The fourth benchmark set consisted of classical 

machine learning approaches (i.e., SVM and DT) that only use recent k gestures as features. Benchmark parameters are summarized in 

Appendix D. Performances are evaluated using precision, recall, and F1. All models are trained and tested with 10-fold cross-validation. 

We conduct the above experiments with six different selections of k (k=1, 5, 10, 15, 20, and 25) for all four benchmark sets. These 

variations can help to understand optimal look-back time windows that help boost gesture recognition performance. Table C3 

summarizes the overall benchmark performances with different k selections. The best performance of each model (when k>1) is 

highlighted in boldface.  

Table C3. Benchmark Performance (Macro-averaged F1 Score) with k Most Recent Gestures 

k most recent gestures 0* 1 5 10 15 20 25 

I-CNN-DT-k 0.849 0.829 0.830 0.830 0.828 0.828 0.828 

I-CNN-SVM-k 0.849 0.570 0.176 0.117 0.095 0.084 0.084 

I-CNN-NN-k 0.849 0.321 0.210 0.206 0.187 0.186 0.168 

CNN-1D-k 0.775 0.776 0.764 0.794 0.781 0.768 0.743 

CNN-2D-k 0.773 0.765 0.778 0.777 0.759 0.765 0.754 

SVM-k + Signal Features 0.110 0.135 0.135 0.135 0.135 0.135 0.135 

DT-k + Signal Features 0.721 0.780 0.829 0.833 0.830 0.830 0.830 

SVM-k N/A N/A 0.624 0.640 0.622 0.618 0.609 

DT-k N/A N/A 0.747 0.749 0.754 0.750 0.740 

Note: * Macro-averaged F1 score of Experiment 2 benchmarks extracted from Table 8: 0.849 for I-CNN-GR, 0.775 for CNN-1D, 0.773 

for CNN-2D, 0.110 for SVM + Signal Features, and 0.721 for DT + Signal Features.  
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Overall, the performance of the proposed I-CNN-GR method exceeded all methods in each benchmark set. This indicates that including 

historical information with gesture co-occurrences at any level of k decreases the overall gesture recognition performance. The 

performances for most benchmarks increased until a peak of k=10 or k=15 (0.830 for I-CNN-DT-10, 0.794 for CNN-1D-10, 0.777 for 

CNN-2D-10, 0.833 for DT-10 + Signal Features, 0.640 for SVM-10, and 0.754 for DT-10). Performances decreased for all methods 

when given additional historical information. These concave performances indicate that gestures recognized recently (10 - 15 seconds) 

have a higher predictive value for gesture recognition models. We further compare the performance of I-CNN-GR against the best 

performing model in each benchmark set when k=10. Paired t-tests are conducted on all macro-averaged F1 scores. Table C4 

summarizes the results, with the best precision, recall, and F1 for each gesture highlighted in boldface. 
 

Table C4. Gesture Recognition Performance of I-CNN-GR vs. Selected Benchmarks Using 10 Recent 
Gestures 

Gestures I-CNN-GR I-CNN-DT-10 CNN-1D-10 
DT-10 + Signal 
Features 

DT-10 

 P R F1 P R F1 P R F1 P R F1 P R F1 

Open Door 1 0.85 0.92 0.88 0.95 0.76 0.84 0.73 0.61 0.67 0.79 0.79 0.79 0.79 0.65 0.71 

Close Door 1 1.00 0.73 0.84 0.82 0.94 0.88 0.52 0.85 0.65 0.79 0.80 0.79 0.79 0.71 0.75 

Open Door 2 0.92 1.00 0.96 0.88 0.82 0.85 0.73 0.76 0.75 0.75 0.76 0.75 0.80 0.73 0.76 

Close Door 2 1.00 0.82 0.90 0.84 0.88 0.86 0.77 0.82 0.80 0.77 0.82 0.80 0.80 0.67 0.73 

Open Fridge 0.81 0.81 0.81 0.84 0.88 0.86 0.90 0.90 0.90 0.81 0.82 0.81 0.44 0.30 0.36 

Close Fridge 0.73 0.80 0.76 0.88 0.83 0.86 0.93 0.84 0.88 0.84 0.83 0.84 0.96 0.84 0.89 

Open 
Dishwasher 

0.85 1.00 0.92 0.96 0.97 0.96 0.91 0.90 0.90 0.78 0.75 0.77 0.71 0.59 0.64 

Close 
Dishwasher 

0.95 1.00 0.97 0.98 0.94 0.96 0.92 0.95 0.94 0.85 0.83 0.84 0.92 0.73 0.82 

Open Drawer 1 0.75 0.92 0.83 0.73 0.87 0.79 0.82 0.82 0.82 0.82 0.84 0.83 0.67 0.58 0.63 

Close Drawer 1 0.92 0.73 0.82 0.84 0.69 0.76 0.85 0.75 0.80 0.80 0.78 0.79 0.93 0.87 0.90 

Open Drawer 2 0.70 0.70 0.70 0.77 0.88 0.82 0.77 0.63 0.69 0.82 0.84 0.83 0.86 0.72 0.79 

Close Drawer 2 0.82 0.82 0.82 0.87 0.73 0.79 0.83 0.59 0.69 0.88 0.86 0.87 0.96 0.91 0.93 

Open Drawer 3 0.73 0.92 0.82 0.62 0.79 0.69 0.70 0.74 0.72 0.86 0.79 0.82 0.77 0.64 0.70 

Close Drawer 3 0.91 0.71 0.80 0.68 0.64 0.66 0.68 0.75 0.71 0.90 0.92 0.91 0.96 0.91 0.93 

Drink from Cup 0.88 0.84 0.86 0.84 0.93 0.88 0.91 0.90 0.90 0.93 0.93 0.93 0.36 0.79 0.49 

Put away Cup 0.95 0.86 0.90 0.88 0.73 0.80 0.88 0.89 0.89 0.95 0.95 0.95 1.00 0.93 0.97 

Averaged F1  

(SD+) 
0.85 

(0.069) 
0.83 

(0.025) 
0.79* 

(0.027) 
0.83 

(0.034) 
0.75* 

(0.026) 

Note: * p-value<0.05. +: SD=standard deviation 

Overall, I-CNN-GR (proposed method in main text) had the highest performance over the four selected benchmarks. It outperformed 

CNN-1D-10 and DT-10 with statistically significant margins. DT-10 was able to capture the gesture co-occurrence to make accurate 

gesture prediction for specific gestures (e.g., “Close Drawer 1”). However, this method cannot consistently detect gestures that do not 

have a dominant co-occurring gesture. For models that did not leverage human-object interactions (e.g., DT-k + Signal Features), 

including recently recognized gestures resulted in more accurate gesture recognition. For example, the DT-10 + Signal Features model 

improved significantly compared to the original DT + Signal Features model to achieve comparable gesture recognition performance 

to I-CNN-GR. However, I-CNN-GR’s variations did not outperform the original heuristic-based approach, suggesting that the local 

gesture correlation is not as informative as the proposed interaction-gesture mapping heuristics. The included recent gestures diluted 

the predictive power of extracted human-object interactions for I-CNN-SVM-k and I-CNN-NN-k. This indicates that the co-occurred 

recent gestures can introduce noise to the predictive model. Future researchers could explore and develop effective and systematic 

mechanisms to selectively include the most informative recent gesture information (e.g., systematically and computationally prune 

irrelevant information) that helps improve overall predictive performance. 
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Appendix D  

Benchmark Model Specifications 

Signal Features Extraction 

Classical machine-learning-based ADLR approaches rely on two classes of manually engineered signal features: temporal and 

frequency/spectral features (Bao and Intille 2004). For each sensor channel, the mean, minimum, maximum, and standard deviation of 

the data segment are extracted as temporal features. Energy and spectral entropy are extracted as frequency/spectral features. The 

energy of the sequence 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑡} is defined as the sum of its squared Fast Fourier Transformation (FFT) coefficients. Spectral 

Entropy is defined as the Shannon Entropy of the Power Spectral Density (PSD) of the sequence 𝑋. Temporal features and energy are 

calculated with the NumPy package (Oliphant 2006); FFT is implemented using the SciPy package (Millman and Aivazis 2011); and 

spectral energy is implemented with the EntroPy package (Vallat 2018). 

CNN-1D 

We implemented CNN-1D (Figure D1) with a model structure similar to I-CNN (Table A1) for a controlled experiment. The first 

convolution layer has a 1D kernel as adopted by Zeng et al. (2014) and Yang et al. (2015). The model parameters are summarized in 

Table D1. 

 
Figure D1. CNN-1D Architecture 

 

Table D1. CNN-1D Model Specifications 

Layer Kernel Size Stride Output Shape Param #    

input   (None, 27, 240, 1) 0 

conv1d_1 (1, 13) (1, 1) (None, 27, 228, 10) 140 

max_pooling2d_1 (3, 19)  (None, 9, 12, 10) 0 

dropout_1 (rate=0.125)   (None, 9, 12, 10) 0 

conv1d_2 (1, 7) (1, 1) (None, 9, 6, 10) 710 

max_pooling2d_2 (3, 3)  (None, 3, 2, 10) 0 

dropout_2 (rate=0.125)   (None, 3, 2, 10) 0 

flatten   (None, 60) 0 

dense_1 (sigmoid)   (None, 40) 2,440 

dropout_3 (rate=0.25)   (None, 40) 0 

dense_2 (softmax)   (None, 16) 656 

Total params: 3,946; trainable params: 3,946 
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CNN-2D 

We implemented a 2D kernel-based CNN benchmark for gesture recognition following Chen and Xue’s design (2015). CNN-2D 

shares a similar design with I-CNN for our controlled experiment. CNN-2D parameters are summarized in Table D2. 

Table D2. CNN-2D Model Specifications 

Layer Kernel Size Stride Output Shape Param #    

input   (None, 27, 240, 1) 0 

conv2d_1 (2, 13) (1, 1) (None, 26, 228, 10) 270 

max_pooling2d_1 (2, 19)  (None, 13, 12, 10) 0 

dropout_1 (rate=0.125)   (None, 13, 12, 10) 0 

conv2d_2 (2, 7) (1, 1) (None, 12, 6, 10) 1,410 

max_pooling2d_2 (6, 3)  (None, 2, 2, 10) 0 

dropout_2 (rate=0.125)   (None, 2, 2, 10) 0 

flatten   (None, 40) 0 

dense_1 (sigmoid)   (None, 40) 1,640 

dropout_3 (rate=0.25)   (None, 40) 0 

dense_2 (softmax)   (None, 16) 656 

Total params: 3,976; trainable params: 3,976 

 
DeepConvLSTM 

We implemented the DeepConvLSTM model by Ordóñez and Roggen (2016) as a gesture recognition benchmark. The original 

DeepConvLSTM model is comprised of four convolutional layers and two LSTM layers, resulting in over 3.9 million training 

parameters, which is overly complicated for training/testing and incomparable with our proposed models and other gesture recognition 

benchmarks (~4k parameters). Therefore, while keeping the convolution-recurrent network structure, we control the parameter size by 

reducing the number of convolutional layers and the dimensionality of the LSTM layers in the DeepConvLSTM model. The final model 

specifications are summarized in Table D3. 

Table D3. DeepConvLSTM Model Specifications 

Layer Kernel Size Stride Output Shape Param #    

input   (None, 27, 240, 1) 0 

conv1d_1 (1, 5) (1, 1) (None, 27, 236, 10) 60 

conv1d_2 (1, 5) (1, 1) (None, 27, 232, 10) 510 

permute   (None, 232, 27, 10) 0 

reshape   (None, 232, 270) 0 

lstm_1   (None, 232, 2) 2,184 

lstm_2   (None, 14) 952 

dense (softmax)   (None, 16) 240 

Total params: 3,946; trainable params: 3,946 
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I-CNN-DT-k 

The I-CNN-DT benchmark has two components: I-CNN for interaction extraction and DT for gesture classification. I-CNN outputs 

the extracted interaction and the corresponding probability from a human-object sensor pair. All interactions and probabilities together 

with the k most recent gestures form the features for the DT classifier. The DT classifier is implemented with scikit-learn (Pedregosa 

et al. 2011) using default configurations. 

I-CNN-SVM-k 

We replace the DT classifier in I-CNN-DT with an SVM classifier. SVM is implemented with scikit-learn (Pedregosa et al. 2011) using 

an RBF kernel and default configurations. 

I-CNN-NN-k 

We replace the DT classifier in I-CNN-DT with a fully connected neural network. The network specifications are summarized in Table 

D4 for k=10. 

Table D4. I-CNN-NN-10 Model Specifications 

Layer Output Shape Param #    

input (None, 26) 0 

dense (softmax) (None, 16) 432 

Total params: 432; trainable params: 432 

CNN-1D-k 

We modify the CNN-1D benchmark model to incorporate the k most recent gestures. The gestures are concatenated with the dense data 

representation output (dropout_3). The concatenated representation is then classified by a fully connected layer (dense_2). The 

parameters are summarized below in Table D5 for k=10. 

Table D5. CNN-1D-10 Model Specifications 

Layer Kernel Size Stride Output Shape Param #    

input_1   (None, 27, 240, 1) 0 

conv1d_1 (1, 13) (1, 1) (None, 27, 228, 10) 140 

max_pooling2d_1 (3, 19)  (None, 9, 12, 10) 0 

dropout_1 (rate=0.125)   (None, 9, 12, 10) 0 

conv1d_2 (1, 7) (1, 1) (None, 9, 6, 10) 710 

max_pooling2d_2 (3, 3)  (None, 3, 2, 10) 0 

dropout_2 (rate=0.125)   (None, 3, 2, 10) 0 

flatten_1   (None, 60) 0 

dense_1 (sigmoid)   (None, 40) 2,440 

dropout_3 (rate=0.25)   (None, 40) 0 

input_2   (None, 10, 1) 0 

flatten_2   (None, 10) 0 

concatenate   (None, 50) 0 

dense_2 (softmax)   (None, 16) 816 

Total params: 4,106; trainable params: 4,106 
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CNN-2D-k 

Following the same process to include k recent gestures as in CNN-1D, we concatenate the k gestures with the data representation 

output (dropout_3) for classification. Parameters are summarized in Table D6 for k=10. 

Table D6. CNN-2D-10 Model Specifications 

Layer Kernel Size Stride Output Shape Param #    

input_1   (None, 27, 240, 1) 0 

conv2d_1 (2, 13) (1, 1) (None, 26, 228, 10) 270 

max_pooling2d_1 (2, 19)  (None, 13, 12, 10) 0 

dropout_1 (rate=0.125)   (None, 13, 12, 10) 0 

conv2d_2 (2, 7) (1, 1) (None, 12, 6, 10) 1,410 

max_pooling2d_2 (6, 3)  (None, 2, 2, 10) 0 

dropout_2 (rate=0.125)   (None, 2, 2, 10) 0 

flatten_2   (None, 40) 0 

dense_1 (sigmoid)   (None, 40) 1,640 

dropout_3 (rate=0.25)   (None, 40) 0 

input_2   (None, 10, 1) 0 

flatten_2   (None, 10) 0 

concatenate   (None, 50) 0 

dense_2 (softmax)   (None, 16) 816 

Total params: 4,136; trainable params: 4,136 

LSTM-Based Seq2Seq HL-ADL Recognition Model 

To compare the HL-ADL recognition performance of the GRU cell against the LSTM cell, we implemented an alternate LSTM-

based Seq2Seq model with the same model structure (Figure 4). The parameters are summarized in Table D7. 

Table D7. S2S_LSTM Model Specifications 

Layer Output Shape Param #    

lstm_1 (None, 40) 9,280 

dense_1 (None, 40) 1,640 

repeat_vector (None, 300, 40) 0 

lstm_2 (None, 300, 40) 12,960 

time_distributed (None, 300, 5) 205 

Total params: 24,085; trainable params: 24,085 

Topic Modeling-based ADL Recognition Model 

Based on Huynh et al. (2008), signal features were extracted from OPPO-HL’s raw sensor data. A Naïve Bayes classifier (NB) was 

trained with 10-fold cross-validation to classify data samples into ML-ADL labels, with a non-overlapping sliding window of one 

second. Using the ML-ADL label sequence as corpora, a Latent Dirichlet Allocation-based topic model (Blei et al. 2003) then models 
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similar label sequence patterns as topics. Since these topics are learned with unsupervised methods, we adopted the Hungarian algorithm 

(Kuhn 1955) to map them to the five HL-ADL labels. Finally, each segment obtained an HL-ADL label characterized by its most likely 

activity topic. 

During the LDA learning process, we experimented with 5, 10, 15, and 20 topics. We observed that the generated topics were highly 

similar, and less than five topics were populated as the most likely topic of each OPPO-HL segment. Therefore, we present the top-10 

activities that characterize each topic in Table D8. The last row of Table D8 is the topic-label assignment calculated by the Hungarian 

algorithm (e.g., Topic 1 was assigned the “Early Morning” HL-ADL label).  

Table D8. Activity Topics Extracted by LDA Model (N=5) 

Top-10 
Activities 

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 

A1 Relax Relax Relax Relax Relax 

A2 Open fridge Open fridge Pick up cup Open door 2 Pick up cup 

A3 Pick up cup Pick up cup Close fridge Close drawer 2 Open fridge 

A4 Close fridge Close fridge Put down cup Close fridge Close fridge 

A5 Put down cup Put down cup Open fridge Open door 1 Open dishwasher 

A6 Open door 2 Open door 2 Close dishwasher Open fridge Put down cup 

A7 Open door 1 Open dishwasher Open drawer 3 Close door 1 Open drawer 3 

A8 Open dishwasher Open drawer 3 Open dishwasher Close drawer 3 Open door 1 

A9 Close dishwasher Close door 1 Open door 2 Open drawer 3 Open door 2 

A10 Open drawer 3 Close dishwasher Open door 1 Pick up cup Close door 2 

HL-ADL 
Assignment 

Early morning Clean up Sandwich time Relaxing N/A 

Stacked AutoEncoder-based HL-ADL Recognition Model 

The Stacked AutoEncoder (SAE) model proposed by Almaslukh et al. (2017) implemented two dense layers to learn the condensed 

data representation. However, due to our input data size (243,000 values), implementing a dense layer with 80 hidden neurons as the 

first layer will result in 19.44 million trainable parameters for both this encoding and as its corresponding decoding layer. We leveraged 

CNNs’ weight-sharing characteristics (Goodfellow et al. 2016) and implemented a 2D convolution layer as the first encoding layer. 

Model parameters are summarized in Table D9. Mean Squared Error (MSE) was used to measure the reconstruction error. 

Table D9. Stacked AutoEncoder Model Specifications 

Layer Kernel Size Stride Output Shape Param #    

input   (None, 27, 9,000, 1) 0 

conv2d (27, 30) (1, 30) (None, 1, 300, 1) 811 

flatten   (None, 300) 
 

dense_1   (None, 10) 3,010 

dense_2   (None, 300) 3,300 

reshape   (None, 1, 300, 1) 0 

conv2d_transpose (27, 30) (1, 30) (None, 27, 9,000, 1) 811 

Total params: 7,923; trainable params: 7,923 
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Following Almaslukh et al. (2017) and Li et al. (2018), we trained our SAE in a greedy approach. We first trained a simple AutoEncoder 

with conv2d as the encoder and with a 2D decomposition layer (conv2d_transpose) as the decoder. After the training converges, we 

fixed the conv2d and conv2d_transpose layers and trained the next encoding/decoding layer (dense_1/dense_2) in the SAE. Finally, all 

layers were configured as trainable for fine-tuning. The condensed data representation generated from dense_1 was used as the input 

for subsequent SVM learning. 
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