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Abstract— The need for more research scrutinizing 

online hacker communities is a common suggestion in 

recent years. However, researchers and practitioners face 

many challenges when attempting to do so. In particular, 

they may encounter hacking-specific terms, concepts, tools, 

and other items that are unfamiliar and may be 

challenging to understand. For these reasons, we are 

motivated to develop an automated method for developing 

understanding of hacker language. We utilize the latest 

advancements in recurrent neural network language 

models (RNNLMs) to develop an unsupervised machine 

learning technique for learning hacker language. The 

selected RNNLM produces state-of-the-art word 

embeddings that are useful for understanding the relations 

between different hacker terms and concepts. We evaluate 

our work by testing the RNNLMs ability to learn relevant 

relations between known hacker terms. Results suggest 

that the latest work in RNNLMs can aid in modeling 

hacker language, providing promising direction for future 

research. 
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I. INTRODUCTION 

Cybersecurity is one of the largest issues impacting society. 

High-profile instances of cybercrime and data theft have 

become of common occurrence. The whole of society is 

affected, as we witness attacks targeting individuals, industry, 

and government. Cybersecurity will remain a problem of great 

relevance for the foreseeable future. As a result, the need for 

more research on hackers is a common suggestion in recent 

years. Specifically, the development of methods to model 

cyber adversaries is one of the critical but unfulfilled research 

need outlined in a 2011 report on cybersecurity by the 

National Science and Technology Council [1].  More research 

on “black hat hackers”, i.e. cybercriminals, would offer new 

knowledge on securing cyberspace against those with 

malicious intent, leading to the development of more effective 

countermeasures against security threats [2].  

Many online hacker communities exist that are of interest to 

cybersecurity researchers. Hackers congregate within online 

communities to share cybercriminal assets and knowledge [3]. 

Some communities contain underground economies where 

participants buy and sell hacking tools and stolen data [4]. 

However, researchers and practitioners face many challenges 

when attempting to study hacker community contents. Such 

communities contain untraditional data much different than 

more traditional virtual communities. Community participants 

may discuss hacking terms, concepts, tools, and other hacker-

specific items that are unknown to researchers. Foreign 

language issues may also arise due to hacker communities 

existing globally, presenting yet another barrier to research.  

For these reasons, we are motivated to develop an 

automated method for understanding hacker language. 

Specifically, we utilize recurrent neural network language 

models (RNNLMs) coupled with methodology from lexical 

semantics to develop an unsupervised machine learning 

technique for learning hacker language. Unsupervised learning 

is ideal as feature generation for supervised techniques may be 

challenging due to the untraditional nature of hacker data, as 

well as the need for language independent models as hacker 

communities exist globally. Such a capability would provide 

great value to the security community by helping help reveal 

the role or functionality of existing and emerging hacker tools, 

malware, and other threats.  

II. LITERATURE REVIEW 

Literature is reviewed from two key areas. Prior work on 

hacker communities reviewed to provide contextual 

information on hacker communities. We then review recent 

works in lexical semantics. In particular, we highlight relevant 

techniques that can help achieve research goals. 

 Hacker Community Research 

Hackers make extensive use of online communities to 

support cybercriminal activity. In particular, hackers use such 

communities to share cybercriminal assets and hacking 

knowledge with each other [5, 6]. It is not uncommon to 

witness hacking tools, malware samples, hacking tutorials, and 

more to be freely shared among community members. An 

example of such activity can be seen in Figure 1. Additionally, 

many hackers will share links to other communities, 

underground economies, and deep web hidden services [7]. 

Such communities are not limited to a specific geopolitical 

region, and have been found to exist globally, including areas 

such as the United States, China, Russia, and the Middle-East 

[3, 8].  
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As a result, recent years have seen security researchers and 

practitioners develop increased interest in analyzing data from 

such communities. Past work provides useful methods for 

identifying and collecting hacker community contents. 

Additionally, past work provides context and insights for 

future hacker studies.  

Some common methods to identify hacker communities 

exist throughout literature. Primarily, past studies resort to 

keyword searches for finding public hacking communities [9]. 

After an initial set of seed communities are identified, they can 

be scrutinized for hyperlinks and references to other hacker 

communities, resulting in a snowball collection procedure 

[10]. After identification, data can be collected through 

various means. Forum can be collected with web crawlers; 

however, anti-crawling measures are sometimes put in place 

by hacker forums to detect and halt crawling activity [9, 11]. 

Thus, it may be necessary to use proxy servers and identity 

obfuscation techniques to avoid detection of crawling 

activities [6]. For example, adjusting crawling rates and 

alternating between IP addresses used for crawling hacker 

contents may help conceal researcher identity and prevent 

hacker communities from discovering crawling activity.  

The majority of previous hacker community research can be 

categorized within a few major themes. First, much existing 

work utilizes qualitative analyses to observe and describe 

hacker community activities [5, 8]. The second branch of work 

generally involves counting procedures and high-level 

statistical analyses of underground economy and carding 

community contents [4, 7, 12]. Lastly, many recent works 

have focused effort on identifying key participants within 

hacker communities [6, 13]. These three categories of prior 

work are useful for describing ongoing activity within hacker 

communities, as they reveal commonly discussed topics, 

provide better understanding of hacker social dynamics, and 

help develop techniques to quickly identify key hacker 

community participants. 

However, one underdeveloped research area is the 

construction of language models to better interpret hacker 

contents. Advancements in this area could help boost 

capabilities for identifying the meaning of hacker-specific 

terms. Additionally, an understanding of hacker language 

could help reveal role and functionality of existing and 

emerging hacker tools, malware, and threats. Lastly, better 

understanding of hacker language could be used to guide 

feature generation for future research. 

Fortunately, methodology from computational linguistics is 

useful in text analysis applications. In particular, many prior 

virtual community studies utilize natural language processing 

for analyzing web contents. Specifically, methodology from 

the lexical semantics domain is useful for developing 

understanding of words and phrases. Such techniques may 

prove useful for analyzing hacker language.  

Lexical Semantics 

Lexical semantics is a subfield of linguistics that focuses on: 

(1) the study of lexical units such as words, affixes, phrases, 

etc., (2) lexical relations, or how different lexical units relate 

to each other, and (3) how lexical units map into different 

concepts. Literature on lexical semantics is far too broad to be 

discussed in full here, thus we focus on the most recent, 

relevant stream of work. Specifically, we focus our review on 

scalable, automated techniques that are suitable for large-scale 

virtual community research. Additionally, we limit our review 

to research utilizing unsupervised learning as identifying 

informative and useful features in untraditional datasets (e.g., 

hacker communities) presents a difficult challenge. Further, 

feature-driven techniques are often times language-specific, 

presenting problems for extending our hacker language 

modeling to the global scale. 

In particular, recurrent neural network language models 

(RNNLMs) have captured much attention in recent years [14, 

15, 16, 17, 18]. They have gained vast popularity due to recent 

advancements in computing continuous vector representations 

 
Figure 1 - Example of a posted message on the HackFive.com forum. The message author shares a video tutorial for configuring a popular botnet tool. The 
message also contains some text describing the video’s contents. Such text can be used to build language models that help researchers better understand 

the role of different hacker terms. For example, here we can observe that “Zeus” refers to a botnet tool. 
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of words, which has resulted in high performance and low 

computational cost relative to other techniques. Additionally, 

while traditional neural networks that are designed to only 

feed-forward information through network nodes, recurrent 

neural networks contain nodes that are interconnected to each 

other in order to form a directed cycle of information flow. 

This process creates an internal state within the neural 

network, causing the model’s learning process to become 

based on previous model states during training. Such behavior 

is advantageous for learning tasks such as language modeling.   

Recent works focus on using RNNLMs to build word 

embeddings. That is, RNNLMs are used to support 

unsupervised learning of words by scrutinizing the local 

context that each word is used within. At a conceptual level, 

word embeddings simply amount to vectors that contain 

values representing the local contexts a given word is found 

within. These vectors, or embeddings, can be used for further 

computational analyses to extract meaning from unstructured 

text. 

Word embeddings have been researched heavily in recent 

literature [14, 16]. One major research applications involving 

word embeddings is to use them for computing the 

similarity/distance between any two words that are part of the 

same vocabulary. A second major application is to use word 

embeddings for learning analogy tasks such as “hat is to head 

as shoe is to ___ (foot).” Word embeddings are particularly 

useful for identifying word meaning. They can be used to 

develop conceptual understanding of unfamiliar terms and to 

measure how conceptually distant two different words are 

from each other. Such applications may be useful for 

advancing our understanding of hacker language. 

III. RESEARCH GAPS AND QUESTIONS 

There is a growing body of work investigating hacker 

communities, but none appear to focus on advancing our 

capability to understand hacker language through automated 

means. An automated method to identify and learn the 

significance of different hacker terms, tool names, etc. would 

be of great asset due to its ability to help identify emerging 

threats and hacker trends. At the same time, there have been 

many recent advancements in using recurrent neural networks 

construct language models through the use of word 

embeddings. Such a technique may be appropriate for our 

research context. Thus, we are motivated to utilize the latest 

work on recurrent neural networks in attempt to build new 

capability for automatically developing understanding of 

hacker language. We posit the following research questions: 

 How can we develop the capability to automatically 

digest hacker community contents and learn about the 

hacker language? 

 Is there a possibility for an unsupervised, scalable 

approach to understanding hacker language? 

IV. RESEARCH TESTBED AND DESIGN 

Our research design (Figure 2) consists of a series of steps 

involving automated data processing and analysis. First, we 

identify and collect hacker forums for this study. Next, we 

process collected data into a form ready for analysis. We then 

construct our RNNLMs and execute experiments. Finally, 

experiment results are evaluated and conclusions are drawn 

based on our findings.  

 

Figure 2 – Research Design 

Similar to previous hacker community research, we utilize 

keyword searches to identify hacker forums to serve as a 

testbed for this study. For example, keywords included 

“hacker community” and “blackhat forum.” Automated 

crawlers deployed to collect identified forums. We 

circumvented potential anti-crawling mechanisms by altering 

crawling rates to avoid detection. Additionally, we routed our 

Internet traffic through the Tor anonymization network to hide 

researcher identity and university affiliation. The Tor network 

is a peer-to-peer Internet traffic routing service that effectively 

anonymizes Internet communications. Packets that enter the 

Tor network are relayed to three or more volunteering peers 

before reaching their destination; the IP address of the original 

sender is thus concealed past the first relay, protecting 

researcher identity from hacker communities.  

We identify and collect two hacker forums for this study 

(Table 1). Forums were chosen based on several factors. First, 

both forums are English-speaking hacker communities. While 

the technique we use is language independent, we chose to test 

our models on English forums as we can more easily interpret 

results than other languages. Additionally, both forums 

contain consistent forum activity over time with recent activity 

from multiple forum participants. Lastly, we observe abundant 

discussion of hacking concepts and tools that would be 

interesting to study in this research.  

TABLE I.  RESEARCH TESTBED 

Forum Members Threads Posts Time Span 

HackFive 947 1,108 5,334 1/24/2013 – 12/30/2014 

HackHound 633 507 3,621 12/10/2012 – 12/30/2014 

After collection, we extract message text from collected 
hacker forum web pages. Regular expressions written to extract 
data embedded within HTML, including thread titles and 
message bodies. We then normalize extracted messages in 
preparation for analysis. First, we convert all text to lowercase 
so that the same word in different cases are not treated as two 
separate words in our model. Second we strip punctuation from 
words to again avoid duplication of words. Stop words are also 
removed from the test bed.  
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To develop word embeddings for our research, we utilize the 
RNNLM proposed recently in [16]. This new model has gained 
traction among many researchers for generating state-of-the-art 
word embeddings [15, 18].  The selected RNNLM has been 
benchmarked across multiple studies and shown to be a leading 
performer for language modeling and information retrieval 
problems [14, 15, 16].  

The selected RNNLM can generate word embeddings via 
two distinct learning tasks, continuous Bag-of-Words (CBOW) 
and skip-gram learning [16]. The difference between the 
CBOW and Skip-gram learning tasks can be described as such: 
CBOW predicts a word given context, while skip-gram predicts 
context given a word. For example, assume you have a window 
of words {w1 w2 w3 w4 w5}.  CBOW predicts w3 given the 
surrounding context words w1,w2,w4,w5. Conversely, skip-gram 
predicts the context w1,w2,w4,w5  given w3. The context window 
size can be adjusted to tune either learning task. 

For the CBOW learning task, it is possible to predict the 
word “States” given only the context {The, United, of, 
America}. The word “States” would be w3 in this example. 
CBOW effectively results in multiclass classification of test 
bed vocabulary, with each word acting as a class. It performs 
particularly well with small context window sizes. In regards to 
the skip-gram learning task, it would be possible to predict the 
context {Recursive, Neural, Language, Model} when provided 
only the word “Network”. In this example, the “Network” 
would also act as w3, despite the prediction task being different. 
The choice of which learning task to use is considered 
application specific [16]. However, CBOW is generally 
regarded as faster and better for modeling frequent words, 
while skip-gram is slower to train as it is a more difficult 
learning task, and is considered better for modeling infrequent 
words.  

However, CBOW and skip-gram only serve as learning 
tasks, and thus still require approximation algorithms for full 
implementation. In particular, approximation algorithms are 
needed to compute the conditional probabilities of all words 
within a vocabulary, and then to normalize the produced 
probability distribution. The reason such algorithms are 
necessary is because the computational complexity of 
computing the probability distribution for entire vocabulary is 
O(n), where n is the vocabulary size. This can be extremely 
problematic for larger datasets, such as virtual community data.  

Two popular approximation algorithms used in recent 
RNNLM work are the hierarchical softmax and negative 
sampling algorithms [16, 18, 19]. Hierarchical softmax builds a 
Huffman tree for mapping out the probability distribution for a 
given vocabulary. This method is considered as better 
performing for infrequent words. Conversely, negative 
sampling approximates the probability distribution by sampling 
data, resulting in better performance for frequent words that are 
more likely to be sampled. Further, both approximation 
algorithms are compatible with CBOW and Skip-gram, 
resulting in interchangeably parts to build the RNNLM as 
proposed in [16]. However, regardless of model chosen, both 
reduce time complexity for training the RNNLM; the 
appropriate choice of which algorithm to use is application-
specific, requiring evaluation of model performance. 

Unfortunately, evaluation of unsupervised learning is a 
common challenge in research. Ideally, evaluation can occur by 
benchmarking the performance of a new technique against 
proven baseline techniques on a well-known test bed [14]. 
However, in our context, we want to understand hacker-
specific words and concepts using an untraditional dataset that 
has not been extensively studied. Additionally, we are faced 
with the challenge of needing evaluation of four separate 
RNNLM configurations [19]. These configurations include 
CBOW learning with hierarchical softmax approximation, 
CBOW learning with negative sampling approximation, skip-
gram learning with hierarchical softmax approximation, skip-
gram learning with negative sampling approximation. 

One recommended evaluation performed in previous 
research on the selected RNNLM is to compute the similarity 
between two known words that have been learned by the 
RNNLM [16]. Since word embeddings are simply word 
vectors, it is possible to compare the similarity of words by 
computing the cosine similarity of their embeddings. This 
procedure effectively reveals how close or distant words are in 
their meaning. Thus, we can train the RNNLM and test what 
relationships it has learned between known hacker terms. 
Results can be evaluated based on our own knowledge of 
different hacker terms. We design an experiment based on 
similarity scoring to test RNNLM performance using some 
known hacker terms: 

1. For each of the four model configurations: 

2. Using a subset of known hacker terms (e.g., botnet, 
keylogger), find k most similar words in a separate 
experiment for each hacker term  

3. Score relevancy (i.e., precision) of returned results for 
each tested term 

4. Compare model configurations using precision-at-k 

V. HYPOTHESES 

Our hypothesis development is primarily guided by prior 

work on RNNLMs. In particular, recent RNNLMs have been 

benchmarked with high performance across many different 

natural language processing tasks, and are considered as state-

of–the-art language modeling techniques [15, 16, 19]. This has 

led RNNLMs to gain traction among many researchers. Thus 

we posit our first set of hypotheses: 

 H1: RNNLMs will be useful for developing 

understanding of hacker language 

o H1a: CBOW learning with hierarchical softmax 

approximation will aid in developing understanding of 

hacker language 

o H1b: CBOW learning with negative sampling 

approximation will aid in developing understanding of 

hacker language 

o H1c: Skip-gram learning with hierarchical softmax 

approximation will aid in developing understanding of 

hacker language 
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o H1d: Skip-gram learning with negative sampling 

approximation will aid in developing understanding of 

hacker language 

However, the performance of RNNLMs on a given test bed 

changes based on the model configuration used [17, 20]. As 

stated earlier, there are four total configurations, with each 

configuration focused on maximizing performance in different 

way (e.g., if a model better for frequent or infrequent words). 

Thus, we posit two hypotheses for this research: 

 H2: The model configurations will vary in performance 

o H2a: CBOW learning with hierarchical softmax 

approximation will perform the best 

o H2b: CBOW learning with negative sampling 

approximation will perform the best 

o H2c: Skip-gram learning with hierarchical softmax 

approximation will perform the best 

o H2d: Skip-gram learning with negative sampling 

approximation will perform the best 

VI. EVALUATION AND DISCUSSION 

We apply each of the model configurations separately 

against our hacker forum testbed, thus generating four distinct 

trained RNNLMs. Each RNNLM needs to be evaluated and 

compared to other competing models. To operationalize 

evaluation, we perform word similarity experiments as 

described in our research design. The goal of our experiments 

is to evaluate performance on real-world application. 

Specifically, we take a subset of 10 popular hacker terms, and 

retrieve the 10 most similar words generated per each of the 

four models. We then calculate a precision-at-10 (P@10) 

metric for the output of each model by checking if the 10 

outputted words possessing high similarity are indeed relevant 

to the inputted test term.  

The 10 words are botnet, RAT, card, logger, crypter, rootkit, 

salt, binder, dork, vulnerability. Botnet, RAT, and rootkit refer 

to hacking tools designed to take control over victim 

computers. Card is related to carding activities and the 

underground economy. Logger refers to keyloggers designed 

to stealthily capture keystrokes, resulting in theft of passwords 

and sensitive information. Crypter, binder, and salt refer to 

encryption tools. Dork, also commonly known as Google 

Dorking, refers to a technique of abusing search engines by 

searching for HTML snippets belonging to vulnerable web 

software; in turn, the search engine will return a result list of 

vulnerable websites. Finally, vulnerability is a more general 

term referring to exploitable security holes.  

 Each of the 10 test terms served as input for each of the 

four model configurations.  We adjust the context window size 

for each model based on suggestions from prior work for 

optimizing performance [16, 19]. Specifically, we use a 

window size of 5 for CBOW models and a window size of 10 

for skip-gram models. In Table 2 and Table 3, we showcase 

two examples to demonstrate our experiment and evaluation 

technique. We follow our example with summary statistics 

over all 10 test terms in Table 4, along with a discussion of our 

results.  

The first input term we test with our models is “botnet.” In 

this case, we assume relevant output would include terms 

related to botnet tools or other related hacking tools. Output 

for each model can be viewed in Table 2. Relevant terms are 

bolded. Similarity refers to the cosine similarity between word 

embeddings between the test term and results. Along with the 

abbreviation CBOW for continuous bag-of-words, we 

abbreviate other terms within the table for formatting 

purposes: skip-gram is represented as SG, hierarchical softmax 

as HS, negative sampling as NS, and precision-at-10 as P@10. 

TABLE II.  RESULTS FOR TEST TERM “BOTNET” 

 

For the “botnet” term, the CBOW + NS model produced the 

most relevant results with 70% P@10. Returned terms such as 

Citadel, Zeus, and Pandemiya all refer to various botnet tools 

hackers can retrieve from forums and utilize to infect victim 

computers and construct their own botnets. The next test term 

we experimented with was “RAT,” which stands for “remote 

administration tool.” RATs are another form of hacking tool 

that provide cybercriminals with a way to take over full 

control of infected computers. We expect relevant output to 

include names of different RATs; results for each model are 

included in Table III. 

TABLE III.  RESULTS FOR TEST TERM “RAT” 

 

Here we again observe good performance with the CBOW + 

NS model and also the SG + HS model. Interestingly, while 

both models perform well, they capture some different 

relevant results. For example, Smallwind and Xanity are two 

RATs identified by SG + HS, but now CBOW + NS. We run 

the same form of test for the remaining 8 hacker terms we 
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identified, and calculate the average P@10 for each model. 

The results are summarized in Table IV. 

TABLE IV.  SUMMARY RESULTS 

 CBOW + HS CBOW + NS SG + HS SG + HS 

Average 

P@10 
20% 70% 66% 56% 

Overall, we see evidence that recent work in RNNLMs can 

be used to develop capability for understanding hacker 

language, supporting H1. In particular, with strong 

performance from the CBOW + NS and SG + HS models, we 

see support for H1b and H1c. Further, the variation in model 

performance also supports H2, as the CBOW + HS and SG + 

NS model configurations seemed to produce less useful 

results. The overall top performing model was CBOW + NS 

with 70% P@10, providing support for H2b. However, the SG 

+ HS model closely follows and should also be considered for 

future work.  

We consider some factors that may have skewed our 

analysis. First, a larger hacker community may alter the 

performance of our models. It would be useful to collect more 

data (including from hacker communities of different 

languages) to further evaluate model performance. 

Additionally, the 10 selected hacker test terms we utilized may 

produce biased results; additional testing with more terms 

would be advantageous. Overall, RNNLMs appear promising 

for developing understanding of hacker language and 

advancing our capability to learn the meaning behind different 

hacker terms, concepts, and their relations to each other. 

VII. CONCLUSION AND CONTRIBUTIONS 

We use the latest advancements in RNNLM research to 

develop understanding of hacker language. New RNNLMs are 

considered state-of-the-art for providing scalable, 

unsupervised learning of the meaning of words within a 

corpus through the use of word embeddings. We use this 

capability to further our understanding of hacker terms, 

concepts, and relationships between them. Overall, we see 

promising direction for future research, such as extending our 

work to include a temporal analysis for identifying the most 

recent, emerging hacker terms and threats. Such capability 

would be of great asset for helping security researchers and 

practitioners learn the latest trends within hacker communities. 
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