

IEEE Intelligence and Security Informatics 2015, Under Review 1

Developing Understanding of Hacker Language

through the use of Lexical Semantics
Victor Benjamin, Hsinchun Chen

Department of Management Information Systems

The University of Arizona

Tucson, AZ, 85721

vabenji@email.arizona.edu, hchen@eller.arizona.edu

Abstract— The need for more research scrutinizing

online hacker communities is a common suggestion in

recent years. However, researchers and practitioners face

many challenges when attempting to do so. In particular,

they may encounter hacking-specific terms, concepts, tools,

and other items that are unfamiliar and may be

challenging to understand. For these reasons, we are

motivated to develop an automated method for developing

understanding of hacker language. We utilize the latest

advancements in recurrent neural network language

models (RNNLMs) to develop an unsupervised machine

learning technique for learning hacker language. The

selected RNNLM produces state-of-the-art word

embeddings that are useful for understanding the relations

between different hacker terms and concepts. We evaluate

our work by testing the RNNLMs ability to learn relevant

relations between known hacker terms. Results suggest

that the latest work in RNNLMs can aid in modeling

hacker language, providing promising direction for future

research.

Keywords - Cybersecurity; Hacker community; Recursive

neural network; Language model

I. INTRODUCTION

Cybersecurity is one of the largest issues impacting society.

High-profile instances of cybercrime and data theft have

become of common occurrence. The whole of society is

affected, as we witness attacks targeting individuals, industry,

and government. Cybersecurity will remain a problem of great

relevance for the foreseeable future. As a result, the need for

more research on hackers is a common suggestion in recent

years. Specifically, the development of methods to model

cyber adversaries is one of the critical but unfulfilled research

need outlined in a 2011 report on cybersecurity by the

National Science and Technology Council [1]. More research

on “black hat hackers”, i.e. cybercriminals, would offer new

knowledge on securing cyberspace against those with

malicious intent, leading to the development of more effective

countermeasures against security threats [2].

Many online hacker communities exist that are of interest to

cybersecurity researchers. Hackers congregate within online

communities to share cybercriminal assets and knowledge [3].

Some communities contain underground economies where

participants buy and sell hacking tools and stolen data [4].

However, researchers and practitioners face many challenges

when attempting to study hacker community contents. Such

communities contain untraditional data much different than

more traditional virtual communities. Community participants

may discuss hacking terms, concepts, tools, and other hacker-

specific items that are unknown to researchers. Foreign

language issues may also arise due to hacker communities

existing globally, presenting yet another barrier to research.

For these reasons, we are motivated to develop an

automated method for understanding hacker language.

Specifically, we utilize recurrent neural network language

models (RNNLMs) coupled with methodology from lexical

semantics to develop an unsupervised machine learning

technique for learning hacker language. Unsupervised learning

is ideal as feature generation for supervised techniques may be

challenging due to the untraditional nature of hacker data, as

well as the need for language independent models as hacker

communities exist globally. Such a capability would provide

great value to the security community by helping help reveal

the role or functionality of existing and emerging hacker tools,

malware, and other threats.

II. LITERATURE REVIEW

Literature is reviewed from two key areas. Prior work on

hacker communities reviewed to provide contextual

information on hacker communities. We then review recent

works in lexical semantics. In particular, we highlight relevant

techniques that can help achieve research goals.

 Hacker Community Research

Hackers make extensive use of online communities to

support cybercriminal activity. In particular, hackers use such

communities to share cybercriminal assets and hacking

knowledge with each other [5, 6]. It is not uncommon to

witness hacking tools, malware samples, hacking tutorials, and

more to be freely shared among community members. An

example of such activity can be seen in Figure 1. Additionally,

many hackers will share links to other communities,

underground economies, and deep web hidden services [7].

Such communities are not limited to a specific geopolitical

region, and have been found to exist globally, including areas

such as the United States, China, Russia, and the Middle-East

[3, 8].

2

As a result, recent years have seen security researchers and

practitioners develop increased interest in analyzing data from

such communities. Past work provides useful methods for

identifying and collecting hacker community contents.

Additionally, past work provides context and insights for

future hacker studies.

Some common methods to identify hacker communities

exist throughout literature. Primarily, past studies resort to

keyword searches for finding public hacking communities [9].

After an initial set of seed communities are identified, they can

be scrutinized for hyperlinks and references to other hacker

communities, resulting in a snowball collection procedure

[10]. After identification, data can be collected through

various means. Forum can be collected with web crawlers;

however, anti-crawling measures are sometimes put in place

by hacker forums to detect and halt crawling activity [9, 11].

Thus, it may be necessary to use proxy servers and identity

obfuscation techniques to avoid detection of crawling

activities [6]. For example, adjusting crawling rates and

alternating between IP addresses used for crawling hacker

contents may help conceal researcher identity and prevent

hacker communities from discovering crawling activity.

The majority of previous hacker community research can be

categorized within a few major themes. First, much existing

work utilizes qualitative analyses to observe and describe

hacker community activities [5, 8]. The second branch of work

generally involves counting procedures and high-level

statistical analyses of underground economy and carding

community contents [4, 7, 12]. Lastly, many recent works

have focused effort on identifying key participants within

hacker communities [6, 13]. These three categories of prior

work are useful for describing ongoing activity within hacker

communities, as they reveal commonly discussed topics,

provide better understanding of hacker social dynamics, and

help develop techniques to quickly identify key hacker

community participants.

However, one underdeveloped research area is the

construction of language models to better interpret hacker

contents. Advancements in this area could help boost

capabilities for identifying the meaning of hacker-specific

terms. Additionally, an understanding of hacker language

could help reveal role and functionality of existing and

emerging hacker tools, malware, and threats. Lastly, better

understanding of hacker language could be used to guide

feature generation for future research.

Fortunately, methodology from computational linguistics is

useful in text analysis applications. In particular, many prior

virtual community studies utilize natural language processing

for analyzing web contents. Specifically, methodology from

the lexical semantics domain is useful for developing

understanding of words and phrases. Such techniques may

prove useful for analyzing hacker language.

Lexical Semantics

Lexical semantics is a subfield of linguistics that focuses on:

(1) the study of lexical units such as words, affixes, phrases,

etc., (2) lexical relations, or how different lexical units relate

to each other, and (3) how lexical units map into different

concepts. Literature on lexical semantics is far too broad to be

discussed in full here, thus we focus on the most recent,

relevant stream of work. Specifically, we focus our review on

scalable, automated techniques that are suitable for large-scale

virtual community research. Additionally, we limit our review

to research utilizing unsupervised learning as identifying

informative and useful features in untraditional datasets (e.g.,

hacker communities) presents a difficult challenge. Further,

feature-driven techniques are often times language-specific,

presenting problems for extending our hacker language

modeling to the global scale.

In particular, recurrent neural network language models

(RNNLMs) have captured much attention in recent years [14,

15, 16, 17, 18]. They have gained vast popularity due to recent

advancements in computing continuous vector representations

Figure 1 - Example of a posted message on the HackFive.com forum. The message author shares a video tutorial for configuring a popular botnet tool. The
message also contains some text describing the video’s contents. Such text can be used to build language models that help researchers better understand

the role of different hacker terms. For example, here we can observe that “Zeus” refers to a botnet tool.

3

of words, which has resulted in high performance and low

computational cost relative to other techniques. Additionally,

while traditional neural networks that are designed to only

feed-forward information through network nodes, recurrent

neural networks contain nodes that are interconnected to each

other in order to form a directed cycle of information flow.

This process creates an internal state within the neural

network, causing the model’s learning process to become

based on previous model states during training. Such behavior

is advantageous for learning tasks such as language modeling.

Recent works focus on using RNNLMs to build word

embeddings. That is, RNNLMs are used to support

unsupervised learning of words by scrutinizing the local

context that each word is used within. At a conceptual level,

word embeddings simply amount to vectors that contain

values representing the local contexts a given word is found

within. These vectors, or embeddings, can be used for further

computational analyses to extract meaning from unstructured

text.

Word embeddings have been researched heavily in recent

literature [14, 16]. One major research applications involving

word embeddings is to use them for computing the

similarity/distance between any two words that are part of the

same vocabulary. A second major application is to use word

embeddings for learning analogy tasks such as “hat is to head

as shoe is to ___ (foot).” Word embeddings are particularly

useful for identifying word meaning. They can be used to

develop conceptual understanding of unfamiliar terms and to

measure how conceptually distant two different words are

from each other. Such applications may be useful for

advancing our understanding of hacker language.

III. RESEARCH GAPS AND QUESTIONS

There is a growing body of work investigating hacker

communities, but none appear to focus on advancing our

capability to understand hacker language through automated

means. An automated method to identify and learn the

significance of different hacker terms, tool names, etc. would

be of great asset due to its ability to help identify emerging

threats and hacker trends. At the same time, there have been

many recent advancements in using recurrent neural networks

construct language models through the use of word

embeddings. Such a technique may be appropriate for our

research context. Thus, we are motivated to utilize the latest

work on recurrent neural networks in attempt to build new

capability for automatically developing understanding of

hacker language. We posit the following research questions:

 How can we develop the capability to automatically

digest hacker community contents and learn about the

hacker language?

 Is there a possibility for an unsupervised, scalable

approach to understanding hacker language?

IV. RESEARCH TESTBED AND DESIGN

Our research design (Figure 2) consists of a series of steps

involving automated data processing and analysis. First, we

identify and collect hacker forums for this study. Next, we

process collected data into a form ready for analysis. We then

construct our RNNLMs and execute experiments. Finally,

experiment results are evaluated and conclusions are drawn

based on our findings.

Figure 2 – Research Design

Similar to previous hacker community research, we utilize

keyword searches to identify hacker forums to serve as a

testbed for this study. For example, keywords included

“hacker community” and “blackhat forum.” Automated

crawlers deployed to collect identified forums. We

circumvented potential anti-crawling mechanisms by altering

crawling rates to avoid detection. Additionally, we routed our

Internet traffic through the Tor anonymization network to hide

researcher identity and university affiliation. The Tor network

is a peer-to-peer Internet traffic routing service that effectively

anonymizes Internet communications. Packets that enter the

Tor network are relayed to three or more volunteering peers

before reaching their destination; the IP address of the original

sender is thus concealed past the first relay, protecting

researcher identity from hacker communities.

We identify and collect two hacker forums for this study

(Table 1). Forums were chosen based on several factors. First,

both forums are English-speaking hacker communities. While

the technique we use is language independent, we chose to test

our models on English forums as we can more easily interpret

results than other languages. Additionally, both forums

contain consistent forum activity over time with recent activity

from multiple forum participants. Lastly, we observe abundant

discussion of hacking concepts and tools that would be

interesting to study in this research.

TABLE I. RESEARCH TESTBED

Forum Members Threads Posts Time Span

HackFive 947 1,108 5,334 1/24/2013 – 12/30/2014

HackHound 633 507 3,621 12/10/2012 – 12/30/2014

After collection, we extract message text from collected
hacker forum web pages. Regular expressions written to extract
data embedded within HTML, including thread titles and
message bodies. We then normalize extracted messages in
preparation for analysis. First, we convert all text to lowercase
so that the same word in different cases are not treated as two
separate words in our model. Second we strip punctuation from
words to again avoid duplication of words. Stop words are also
removed from the test bed.

4

To develop word embeddings for our research, we utilize the
RNNLM proposed recently in [16]. This new model has gained
traction among many researchers for generating state-of-the-art
word embeddings [15, 18]. The selected RNNLM has been
benchmarked across multiple studies and shown to be a leading
performer for language modeling and information retrieval
problems [14, 15, 16].

The selected RNNLM can generate word embeddings via
two distinct learning tasks, continuous Bag-of-Words (CBOW)
and skip-gram learning [16]. The difference between the
CBOW and Skip-gram learning tasks can be described as such:
CBOW predicts a word given context, while skip-gram predicts
context given a word. For example, assume you have a window
of words {w1 w2 w3 w4 w5}. CBOW predicts w3 given the
surrounding context words w1,w2,w4,w5. Conversely, skip-gram
predicts the context w1,w2,w4,w5 given w3. The context window
size can be adjusted to tune either learning task.

For the CBOW learning task, it is possible to predict the
word “States” given only the context {The, United, of,
America}. The word “States” would be w3 in this example.
CBOW effectively results in multiclass classification of test
bed vocabulary, with each word acting as a class. It performs
particularly well with small context window sizes. In regards to
the skip-gram learning task, it would be possible to predict the
context {Recursive, Neural, Language, Model} when provided
only the word “Network”. In this example, the “Network”
would also act as w3, despite the prediction task being different.
The choice of which learning task to use is considered
application specific [16]. However, CBOW is generally
regarded as faster and better for modeling frequent words,
while skip-gram is slower to train as it is a more difficult
learning task, and is considered better for modeling infrequent
words.

However, CBOW and skip-gram only serve as learning
tasks, and thus still require approximation algorithms for full
implementation. In particular, approximation algorithms are
needed to compute the conditional probabilities of all words
within a vocabulary, and then to normalize the produced
probability distribution. The reason such algorithms are
necessary is because the computational complexity of
computing the probability distribution for entire vocabulary is
O(n), where n is the vocabulary size. This can be extremely
problematic for larger datasets, such as virtual community data.

Two popular approximation algorithms used in recent
RNNLM work are the hierarchical softmax and negative
sampling algorithms [16, 18, 19]. Hierarchical softmax builds a
Huffman tree for mapping out the probability distribution for a
given vocabulary. This method is considered as better
performing for infrequent words. Conversely, negative
sampling approximates the probability distribution by sampling
data, resulting in better performance for frequent words that are
more likely to be sampled. Further, both approximation
algorithms are compatible with CBOW and Skip-gram,
resulting in interchangeably parts to build the RNNLM as
proposed in [16]. However, regardless of model chosen, both
reduce time complexity for training the RNNLM; the
appropriate choice of which algorithm to use is application-
specific, requiring evaluation of model performance.

Unfortunately, evaluation of unsupervised learning is a
common challenge in research. Ideally, evaluation can occur by
benchmarking the performance of a new technique against
proven baseline techniques on a well-known test bed [14].
However, in our context, we want to understand hacker-
specific words and concepts using an untraditional dataset that
has not been extensively studied. Additionally, we are faced
with the challenge of needing evaluation of four separate
RNNLM configurations [19]. These configurations include
CBOW learning with hierarchical softmax approximation,
CBOW learning with negative sampling approximation, skip-
gram learning with hierarchical softmax approximation, skip-
gram learning with negative sampling approximation.

One recommended evaluation performed in previous
research on the selected RNNLM is to compute the similarity
between two known words that have been learned by the
RNNLM [16]. Since word embeddings are simply word
vectors, it is possible to compare the similarity of words by
computing the cosine similarity of their embeddings. This
procedure effectively reveals how close or distant words are in
their meaning. Thus, we can train the RNNLM and test what
relationships it has learned between known hacker terms.
Results can be evaluated based on our own knowledge of
different hacker terms. We design an experiment based on
similarity scoring to test RNNLM performance using some
known hacker terms:

1. For each of the four model configurations:

2. Using a subset of known hacker terms (e.g., botnet,
keylogger), find k most similar words in a separate
experiment for each hacker term

3. Score relevancy (i.e., precision) of returned results for
each tested term

4. Compare model configurations using precision-at-k

V. HYPOTHESES

Our hypothesis development is primarily guided by prior

work on RNNLMs. In particular, recent RNNLMs have been

benchmarked with high performance across many different

natural language processing tasks, and are considered as state-

of–the-art language modeling techniques [15, 16, 19]. This has

led RNNLMs to gain traction among many researchers. Thus

we posit our first set of hypotheses:

 H1: RNNLMs will be useful for developing

understanding of hacker language

o H1a: CBOW learning with hierarchical softmax

approximation will aid in developing understanding of

hacker language

o H1b: CBOW learning with negative sampling

approximation will aid in developing understanding of

hacker language

o H1c: Skip-gram learning with hierarchical softmax

approximation will aid in developing understanding of

hacker language

5

o H1d: Skip-gram learning with negative sampling

approximation will aid in developing understanding of

hacker language

However, the performance of RNNLMs on a given test bed

changes based on the model configuration used [17, 20]. As

stated earlier, there are four total configurations, with each

configuration focused on maximizing performance in different

way (e.g., if a model better for frequent or infrequent words).

Thus, we posit two hypotheses for this research:

 H2: The model configurations will vary in performance

o H2a: CBOW learning with hierarchical softmax

approximation will perform the best

o H2b: CBOW learning with negative sampling

approximation will perform the best

o H2c: Skip-gram learning with hierarchical softmax

approximation will perform the best

o H2d: Skip-gram learning with negative sampling

approximation will perform the best

VI. EVALUATION AND DISCUSSION

We apply each of the model configurations separately

against our hacker forum testbed, thus generating four distinct

trained RNNLMs. Each RNNLM needs to be evaluated and

compared to other competing models. To operationalize

evaluation, we perform word similarity experiments as

described in our research design. The goal of our experiments

is to evaluate performance on real-world application.

Specifically, we take a subset of 10 popular hacker terms, and

retrieve the 10 most similar words generated per each of the

four models. We then calculate a precision-at-10 (P@10)

metric for the output of each model by checking if the 10

outputted words possessing high similarity are indeed relevant

to the inputted test term.

The 10 words are botnet, RAT, card, logger, crypter, rootkit,

salt, binder, dork, vulnerability. Botnet, RAT, and rootkit refer

to hacking tools designed to take control over victim

computers. Card is related to carding activities and the

underground economy. Logger refers to keyloggers designed

to stealthily capture keystrokes, resulting in theft of passwords

and sensitive information. Crypter, binder, and salt refer to

encryption tools. Dork, also commonly known as Google

Dorking, refers to a technique of abusing search engines by

searching for HTML snippets belonging to vulnerable web

software; in turn, the search engine will return a result list of

vulnerable websites. Finally, vulnerability is a more general

term referring to exploitable security holes.

 Each of the 10 test terms served as input for each of the

four model configurations. We adjust the context window size

for each model based on suggestions from prior work for

optimizing performance [16, 19]. Specifically, we use a

window size of 5 for CBOW models and a window size of 10

for skip-gram models. In Table 2 and Table 3, we showcase

two examples to demonstrate our experiment and evaluation

technique. We follow our example with summary statistics

over all 10 test terms in Table 4, along with a discussion of our

results.

The first input term we test with our models is “botnet.” In

this case, we assume relevant output would include terms

related to botnet tools or other related hacking tools. Output

for each model can be viewed in Table 2. Relevant terms are

bolded. Similarity refers to the cosine similarity between word

embeddings between the test term and results. Along with the

abbreviation CBOW for continuous bag-of-words, we

abbreviate other terms within the table for formatting

purposes: skip-gram is represented as SG, hierarchical softmax

as HS, negative sampling as NS, and precision-at-10 as P@10.

TABLE II. RESULTS FOR TEST TERM “BOTNET”

For the “botnet” term, the CBOW + NS model produced the

most relevant results with 70% P@10. Returned terms such as

Citadel, Zeus, and Pandemiya all refer to various botnet tools

hackers can retrieve from forums and utilize to infect victim

computers and construct their own botnets. The next test term

we experimented with was “RAT,” which stands for “remote

administration tool.” RATs are another form of hacking tool

that provide cybercriminals with a way to take over full

control of infected computers. We expect relevant output to

include names of different RATs; results for each model are

included in Table III.

TABLE III. RESULTS FOR TEST TERM “RAT”

Here we again observe good performance with the CBOW +

NS model and also the SG + HS model. Interestingly, while

both models perform well, they capture some different

relevant results. For example, Smallwind and Xanity are two

RATs identified by SG + HS, but now CBOW + NS. We run

the same form of test for the remaining 8 hacker terms we

6

identified, and calculate the average P@10 for each model.

The results are summarized in Table IV.

TABLE IV. SUMMARY RESULTS

 CBOW + HS CBOW + NS SG + HS SG + HS

Average

P@10
20% 70% 66% 56%

Overall, we see evidence that recent work in RNNLMs can

be used to develop capability for understanding hacker

language, supporting H1. In particular, with strong

performance from the CBOW + NS and SG + HS models, we

see support for H1b and H1c. Further, the variation in model

performance also supports H2, as the CBOW + HS and SG +

NS model configurations seemed to produce less useful

results. The overall top performing model was CBOW + NS

with 70% P@10, providing support for H2b. However, the SG

+ HS model closely follows and should also be considered for

future work.

We consider some factors that may have skewed our

analysis. First, a larger hacker community may alter the

performance of our models. It would be useful to collect more

data (including from hacker communities of different

languages) to further evaluate model performance.

Additionally, the 10 selected hacker test terms we utilized may

produce biased results; additional testing with more terms

would be advantageous. Overall, RNNLMs appear promising

for developing understanding of hacker language and

advancing our capability to learn the meaning behind different

hacker terms, concepts, and their relations to each other.

VII. CONCLUSION AND CONTRIBUTIONS

We use the latest advancements in RNNLM research to

develop understanding of hacker language. New RNNLMs are

considered state-of-the-art for providing scalable,

unsupervised learning of the meaning of words within a

corpus through the use of word embeddings. We use this

capability to further our understanding of hacker terms,

concepts, and relationships between them. Overall, we see

promising direction for future research, such as extending our

work to include a temporal analysis for identifying the most

recent, emerging hacker terms and threats. Such capability

would be of great asset for helping security researchers and

practitioners learn the latest trends within hacker communities.

ACKNOWLEDGMENT

This work was supported by the National Science
Foundation under Grant No. SES-1314631 and also under
Grant No. DUE-1303362.

REFERENCES

[1] National Science and Technology Council, “Trustworthy

Cyberspace: Strategic Plan for the Federal Cybersecurity Research

and Development Program,” pp. 1–19, 2011.

[2] M. Siponen, D. Straub, H. R. Rao, and T. S. Raghu, “Moving

Toward Black Hat Research in Information Systems Security An

Editorial Introduction to the Special Issue,” MIS Q., vol. 34, no. 3,
pp. 431–433, 2010.

[3] V. Benjamin and H. Chen, “Securing Cyberspace : Identifying Key

Actors in Hacker Communities,” IEEE Intelligence and Security
Informatics, pp. 24–29, 2012.

[4] T. J. Holt and M. Kilger, “Know Your Enemy : The Social

Dynamics of Hacking,” Honeynet Proj., pp. 1–17, 2012.

[5] M. Motoyama, D. McCoy, K. Levchenko, S. Savage, and G. M.

Voelker, “An analysis of underground forums,” Proc. 2011 ACM

SIGCOMM Conf. Internet Meas. Conf. - IMC ’11, p. 71, 2011.

[6] V. Benjamin and H. Chen, “Time-to-event Modeling for Predicting

Hacker IRC Community Participant Trajectory,” in IEEE

Intelligence and Security Informatics, 2014.

[7] J. Martin, “Lost on the Silk Road: Online drug distribution and the

‘cryptomarket,’” Criminol. Crim. Justice, Oct. 2013.

[8] T. J. Holt, D. Strumsky, O. Smirnova, and M. Kilger, “Examining
the Social Networks of Malware Writers and Hackers,” Int. J. Cyber

Criminol., vol. 6, no. 1, pp. 891–903, 2012.

[9] H. Fallmann, G. Wondracek, and C. Platzer, “Covertly Probing
Underground Economy Marketplaces,” Proc. 7th Int. Conf. Detect.

intrusions malware, vulnerability Assess., pp. 101–110, 2010.

[10] T. J. Holt and E. Lampke, “Exploring stolen data markets online:
products and market forces,” Crim. Justice Stud. A Crit. J. Crime,

Law, Soc., vol. 23, no. 1, pp. 33–50, Mar. 2010.

[11] J. F. Spencer, “Using XML to map relationships in hacker forums,”
Proc. 46th Annu. Southeast Reg. Conf. XX, p. 487, 2008.

[12] M. Yip, N. Shadbolt, and C. Webber, “Why Forums ? An Empirical

Analysis into the Facilitating Factors of Carding Forums,” ACM
Web Sci., vol. May, 2013.

[13] A. Abbasi, W. Li, V. Benjamin, S. Hu, and H. Chen, “Descriptive
Analytics : Examining Expert Hackers in Web Forums,” in IEEE

Intelligence and Security Informatics, 2014.

[14] P. Jansen, M. Surdeanu, and P. Clark, “Discourse Complements
Lexical Semantics for Non-factoid Answer Reranking,” in

Proceedings of the 52nd Annual Meeting of the Association for

Computational Linguistics, 2014, pp. 977–986.

[15] O. Levy and Y. Goldberg, “Linguistic Regularities in Sparse and

Explicit Word Representations,” in Proceedings of the Eighteenth

Conference on Computational Natural Language Learning
Conference, 2014, p. 171.

[16] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation

of word representations in vector space,” arXiv Prepr. arXiv, p.
1301.3781, 2013.

[17] A. Mnih and K. Kavukcuoglu, “Learning word embeddings

efficiently with noise-contrastive estimation,” in Advances in Neural
Information Processing Systems, 2013, pp. 2265–2273.

[18] J. Pennington, R. Socher, and C. D. Manning, “GloVe : Global

Vectors for Word Representation,” in Proceedings of the Empiricial
Methods in Natural Language Processing, 2014.

[19] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,

“Distributed representations of words and phrases and their

compositionality,” in Advances in Neural Information Processing

Systems, 2013, pp. 3111–3119.

